Lattice Vibration Spectra. LXXV. IR Single Crystal Reflection Spectra of Sr(C10 3 ) 2 H. D. Lutz and M. Schmidt Anorganische Chemie I, Universität Siegen, Siegen, Germany Z. Naturforsch. 47a, 1145 1149 (1992); received August 17, 1992 Polarized infrared reflection spectra of Sr(C10 3 ) 2 single-crystal plates are recorded and analysed for the frequencies of the transversal and longitudinal optical zone-centre phonon modes and other oscillator parameters by Kramers-Kronig analyses and both the classical 3 parameter (dielectric sum-function) and the 4 parameter (factorized form) oscillator-fit methods. The frequencies computed are compared with the results of previous single-crystal Raman studies. Because of the great distortion of the C 1 0 3 ions (site symmetry C J , no intraionic coupling of the CIO vibrations to symmetric ( v j and asymmetric (v3) stretching modes occurs. The T O / L O splittings of respective CIO unit-cell group modes rank like the vector elements of the corresponding CIO bonds with respect to the crystal axes. Key words: Strontium chlorate; IR reflection spectra; Oscillator-fit calculations; LO phonon modes. 1. Introduction 2. Experimental The energies (frequencies) of transversal optical (TO) and longitudinal optical (LO) phonons of solids are available from inelastic neutron scattering techniques as well as from IR reflection spectra using Kramers-Kronig analyses and oscillator-fit procedures, respectively (see for example [1]). In the case of compounds which crystallize in acentric space groups, the T O and L O phonon modes can also be established by single-crystal Raman experiments [2-4], We have performed such Raman studies on Sr(C10 3 ) 2 single crystals [3]. However, assignment of the spectra obtained was not unequivocally possible. In order to confirm and complete these results we recorded polarized single-crystal IR reflection spectra of Sr(C10 3 ) 2 and calculated the T O and L O phonon energies using the fitting procedures mentioned above [1]. More recent investigations on L O phonons of acentric compounds using both IR and Raman experiments are scarce (see, for example, Razzetti et al. [5]). Single crystals as large as 27 cm 3 in size were grown from aqueous solutions by controlled evaporation at 40 °C [7], For the IR studies, the crystals were cut to give plates of about ( 1 2 x 1 2 x 3 ) m m 3 in size. The surface were (100) and (001) planes, respectively. The orientation of the crystal axes was determined by both X-ray and optical methods [8]. The measurements were performed at near normal incidence on a Bruker IFS-114 Fourier transform interferometer in the range 4 0 - 1 8 0 0 c m - 1 . An aluminium mirror was taken as a reference. Polarized IR radiation was obtained using gold wire grid-type polarizers with Polyethylen and KRS5 substrate for the low and high frequency region, respectively. The polarized IR reflection spectra were converted into the dielectric dispersion relations by means of Sr(C10 3 ) 2 crystallizes in the space group Fdd2-C 2 ^ with Z = 8. X-ray single-crystal structure data are reported in [6], The result of group theoretical treatment (unit-cell group C 2 v ) is given in Table 1 [6], Table 1. Unit-cell group analysis of zone centre phonon modes of Sr(C10 3 ) 2 . c 2v n A, 13 13 14 14 A-. B, b2 Reprint requests to Prof. Dr. H . D . Lutz, Anorganische Chemie I, Universität G H Siegen, W-5900 Siegen. "T z - X Y tij. % "I 3 4 4 4 3 3 3 3 6 6 6 6 IR, RA RA IR, RA IR, RA n, total amount of irreducible representations; nT, translations; nT, translational modes; nx, internal (stretching and bending) modes of the C10 3 ions. 0932-0784 / 92 / 1100-1145 $ 01.30/0. - Please order a reprint rather than making your own copy. Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz. This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License. Zum 01.01.2015 ist eine Anpassung der Lizenzbedingungen (Entfall der Creative Commons Lizenzbedingung „Keine Bearbeitung“) beabsichtigt, um eine Nachnutzung auch im Rahmen zukünftiger wissenschaftlicher Nutzungsformen zu ermöglichen. On 01.01.2015 it is planned to change the License Conditions (the removal of the Creative Commons License condition “no derivative works”). This is to allow reuse in the area of future scientific usage. 1146 H. D. Lutz and M. Schmidt • Lattice Vibration Spectra. LXXV nal optical phonon frequencies, i.e. coTO and coLO, were determined directly as oscillator parameters or from the peak positions of the imaginary parts of the dielectric constant e" and the inverse dielectric constant — Im(l/e), respectively. 3. Results Fig. 1. Polarized IR reflection spectra ( , 4 P M oscillator fit) and dispersion functions ( , e"; , — Im(l/e) of Sr(C10 3 ) 2 single crystals; A x : (100), E || c; B x : (001), E || a\ B 2 : (001), E || b. both Kramers-Kronig analyses and oscillator-model calculations using the classic dielectric sum function (3 parameter model) as well as the factorized form of the dielectric function (4 parameter model). Details are given elsewhere [1, 8]. The transversal and longitudi- Polarized IR reflection spectra of Sr(C!0 3 ) 2 single crystals and various dielectric dispersion relations are shown in Figure 1. Additional spectra and dispersion functions are given in [6, 8]. The oscillator parameters and the frequencies of the T O and LO phonon modes are given in Tables 2 and 3. The main results obtained are that (i) the T O and LO phonon frequencies calculated with the 4 parameter oscillator fit model best fit the respective Raman data (see Tables 3 and 4 and Fig. 2), (ii) the damping constants yLO are not always larger than yTO as it is reported in [10] for the one oscillator case (see Table 2), (iii) the Raman band at 1074 c m " 1 is unequivocally a LO mode of the CIO stretching vibrations, and not a two phonon band as discussed in [3] *, * The lack of L O modes for the C10 ( 1 ) and C10, 2 ) vibrations in the A t (LO) Raman spectrum of Sr(C10 3 ) 2 discussed in [3] is due to the small T O / L O splittings of these vibrations in species A j . 1147 H. D. Lutz and M. Schmidt • Lattice Vibration Spectra. LXXV Table 2. Oscillator parameters ( c m - 1 ) of the zone-centre phonon modes of Sr(C10 3 ) 2 obtained from IR single-crystal reflection spectra by the 4 parameter oscillator fit method. 4n Qa A, 100 120 140 160 [cm"1] Fig. 2. Oscillator fit of a polarized FIR reflection spectrum (E || c) of a (100) face of Sr(C10 3 ) 2 ; , 4 P M model; , 3 P M model. and (iv) the T O / L O splittings of the CIO stretching vibrations mainly reflect the vector elements of the CIO bonds with respect to the crystal axes (see Table 5), i.e. the band intensities, which are expected on the assumption that the vibrations of the three CIO arms of the CIO3 ions are intraionically uncoupled [3]. Assignment 82 109 128 137 158 191 511 616 893 1029 8.9 29.8 16.5 16.1 14.7 23.2 4.4 10.2 10.0 21.4 86 114 133 147 174 228 517 625 894 1078 9.9 23.8 12.6 18.3 9.6 19.6 5.3 10.5 9.8 13.7 T' R R R T' T' ^(C103) "(Cio3) V (Cl-Ou)> V (Cl-0(3)) £ co = 2.54 1.89 2.54 0.34 0.25 0.47 82 107 145 163 200 18.4 15.0 10.4 9.8 26.7 88 130 153 172 227 17.1 12.5 9.4 10.6 27.9 T' T' ? R T' ? 0.04 0.02 0.03 0.34 0.15 0.01 476 517 624 905 947 1022 4.3 6.8 8.9 11.2 10.8 18.5 478 519 627 929 1007 1028 5.5 7.9 9.0 7.8 14.6 24.3 ^(C103) V103) "(C103) V (C1-0(1,) V (CI-0,2,) V (Cl-0,3)) B, = 2.57 T r 13.2 0.77 0.80 0.57 0.57 0.42 36 63 122 135 144 181 7.4 19.2 10.5 10.9 12.5 20.2 56 73 127 139 162 209 9.1 25.0 8.6 9.9 15.3 13.7 T T 0.01 0.05 0.05 0.18 0.00 0.18 475 518 624 911 960 1031 5.4 5.2 8.2 8.3 8.1 13.6 476 523 629 934 960 1076 5.8 5.5 9.9 8.1 8.5 10.7 ^(ClOj) ^(cio3) "(C103) v<ci-o , n - (1)) V (Cl-0(2)) V <Cl-0(3)) 4. Discussion The results obtained confirm the recent findings [1] that, owing to the strong distortion of the CIO J ions in Sr(C10 3 ) 2 , intraionic coupling of the CIO stretching vibrations to a symmetric and two asymmetric ones does not occur. The vector element of a hypothetical symmetric CIO stretching mode ( v j would be largest with respect to the c axis of the structure, i.e. 42.67 compared to 17.64 and 34.75 with respect to the a and b axes, respectively, and, hence, the lowest energy CIO stretching mode, which would be the symmetric one in the case of undistorted CIO3 ions, should possess the greatest intensity and T O / L O splitting in species Al. This is not the case, as shown in Fig. 1 and Table 2. However, there are two findings which cannot be interpreted so far. (i) The T O / L O splitting (and the y LO £oo=2.37 1.03 0.99 0.85 0.50 0.56 0.47 0.06 0.07 0.01 0.22 B, VTO a 4nQj = £x(a>l0.—a>j0j)/(Oj0. Ü k= 1 k* j R R R (o)l0k-o)l0j)/((o$0k-(D*0j) [1,9]. (For comparison with experimental 3 P M data see [8].) b R, T', (5, v, librational, translational, bending and stretching modes, respectively; assignment of the librations and translational modes (lattice vibrations) is only tentative. intensity) of the C10 (2) band of species B 2 are too small compared to the corresponding vector element (see Table 5). This too small T O / L O splitting may be caused by unit-cell group interaction effects (interionic coupling) or by partial intraionic coupling of the respective CIO vibrations in the case of the mode under discussion, (ii) The oscillator strength of the C10 ( 1 ) 1148 H. D. Lutz and M. Schmidt • Lattice Vibration Spectra. LXXV Table 3. T O and LO phonon energies of the C10 3 internal vibrations (species A t ) of Sr(C10 3 ) 2 obtained from both single-crystal Raman spectra and IR reflection measurements (peaks of the dispersion relations of the imaginary part of the dielectric constant e" and the dielectric loss function — Im(l/e), evaluation procedures see [1]); data of species B; and B 2 see [8]. KKA a 3 PM e" OJ — Im(l/e) TO 512 615 893 1031 a 517 625 895 1077 b 4 PM e" — Im(l/e) e" °ho (»LO °ho 517 625 893 1079 511 615 893 1029 Kramers-Kronig analysis. parameters (see Table 2). b c Raman data [3] — Im(l/fi) 511 615 893 1029 481 511 620 898 959 1023 a 475 516 623 899 944 1021 w LO W RO 476 517 624 905 947 1022 478 519 627 929 1007 1028 (Oto 511 616 893 1029 3 Parameter oscillator-fit method. - B2 Raman d W TO/WLO IR OP coTO 517 625 893 1077 Table 4. T O and L O phonon energies ( c m - 1 ) of the internal CIOJ vibrations (species A 2 , B t , and B 2 ) obtained from single-crystal Raman spectra [3] and IR reflection measurements (oscillator parameters of the 4 P M oscillator-fit calculations, see Table 2). A7 B, Raman Raman 0}JO d c 517 625 894 1078 W LO 510 615 516 622 1021 1074 - 4 Parameter oscillator-fit method. - d Oscillator b a n d of species B j is t o o l a r g e c o m p a r e d t o t h e T O / L O s p l i t t i n g of t h i s b a n d (see T a b l e 5). T h e unit-cell g r o u p s p l i t t i n g of t h e C I O s t r e t c h i n g m o d e s (see T a b l e 6) a r e d i f f e r e n t f o r t h e v i b r a t i o n s of t h e t h r e e C I O a r m s . T h e f r e q u e n c i e s of t h e v a r i o u s m o d e s r a n g e B 2 > Bx > A 2 > A l f o r t h e C 1 0 ( 1 ) m o d e s , IR A»TO 475 475 520 518 627 624 892 911 962 960 1024, 1074 1031 «LO 476 523 629 934 960 1076 B 1 >B 2 «A 2 >A 1 for the C 1 0 ( 2 ) ones, a n d B2% A j > Bx « A 2 for the C 1 0 ( 3 ) vibrations. T h e m a x i m u m unit-cell g r o u p s p l i t t i n g s r a n g e ^ v 0 0 ( i ) > < d v C I O r | « z l v a 0 ( 3 ) . T h e s e d i f f e r e n t unit-cell g r o u p s p l i t t i n g s c a n b e r e a l i z e d by t h e d i p o l e - d i p o l e i n t e r a c t i o n m o d e l . As b a s i s of t h i s d i s c u s s i o n , t h e h y p o t h e t i c a l p h o n o n fre- oblique phonons [3]. Table 5. Vector elements (pm) [3] of the CIO arms of the C 1 0 3 ions with respect to the crystal axes of Sr(C10 3 ) 2 (VE) and both T O / L O splittings ( c m - 1 ) and oscillator strengths (OS) (see Table 2) of the respective CIO stretching vibrations (CIO bond lengths (pm) [6] in parentheses). C10 ( 1 ) x y z (Bj) (B 2 ) (A,) (150.7) C10 ( 2 ) (147.4) C10 ( 3 ) VE TO/LO OS VE TO/LO OS 98.2 106.9 40.6 24 23 9 0.340 0.183 0.072 123.6 73.2 33.1 60 0 1 0.149 0.003 0.009 Table 6. Unit-cell group splittings of the CIO stretching modes ( c m - 1 ) of Sr(C10 3 ) 2 (the hypothetical phonon frequencies to 0 are calculated with the equation u>l = (2co* 0 + a>£ 0 )/3[ll]). Species cio(1) cio(2) cio(3) A, A2 B, B2 Mean values of a>0 893 898 913 919 945 959 967 960 1046 1023 1024 1046 906 958 1035 (145.8) VE 27.5 76.0 120.5 TO/LO OS 6 45 49 0.005 0.180 0.221 q u e n c i e s co 0 , w h i c h a r e a f f e c t e d n e i t h e r by t h e local field £ l o c n o r b y l o n g - r a n g e electric f o r c e s [11], a r e c h o s e n (see T a b l e 6). T h e C I O 3 b e n d i n g m o d e s a r e strongly intraionically c o u p l e d . A d e t a i l e d i n t e r p r e t a t i o n of t h e s e m o d e s , f o r w h i c h co 0 p h o n o n f r e q u e n c i e s m a y b e c a l c u l a t e d in t h e s a m e m a n n e r a s f o r t h e s t r e t c h i n g m o d e s , in t e r m s of intensities, T O / L O splittings, and unit-cell group s p l i t t i n g s is t h e r e f o r e n o t s t r a i g h t f o r w a r d . T h e s a m e is true for the lattice m o d e s (translational vibrations) 1149 H. D. Lutz and M. Schmidt • Lattice Vibration Spectra. LXXV a n d l i b r a t i o n s of t h e C I O 3 i o n s in the l o w - f r e q u e n c y T h e a u t h o r s a r e g r e a t l y i n d e b t e d t o P r o f . D r . S. r e g i o n of t h e s p e c t r a . F o r t h e a s s i g n m e n t of these Haussühl, Univ. Cologne, for providing m o d e s see T a b l e 2. monocrystals. [1] J. Himmrich, G. Schneider, J. Zwinscher, and H. D. Lutz, Z. Naturforsch. 46a, 1095 (1991). [2] R. Claus, L. Merten, and J. Brandmüller, Light Scattering by Phonon-Polaritons, Springer Tracts in Modern Physics 75, Berlin 1975. [3] H. D. Lutz, E. Alici, and Th. Kellersohn, J. Raman Spectrosc. 21, 387 (1990). [4] V. Lemos, P. A. P. Gomes, F. E. A. Melo, J. Mendes Filho, and J. E. Moreira, J. Raman Spectrosc. 20, 155 (1989). [5] C. Razzetti, P. P. Lottici, and R. Bacewicz, J. Phys. C 15, 5657 (1982). Sr(C103)2 [6] H. D. Lutz, W. Buchmeier, E. Alici, and W. Eckers, Z. Anorg. Allg. Chem. 529, 46 (1985). [7] S. Haussühl, private communication. [8] M. Schmidt, Doctoral Thesis, Univ. Siegen 1992. [9] L. Merten and G. Lamprecht, Phys. Stat. Sol. 39, 573 (1970). [10] R. P. Lowndes, Phys. Rev. B 1, 2754 (1970). [11] P. Grosse, Freie Elektronen in Festkörpern, SpringerVerlag, Berlin 1979, pp. 212 ff.
© Copyright 2026 Paperzz