Honors Pre-Calculus Review: Unit 5 Name: __________________________ Multiple Choice: Choose the best answer to each question. Place your final answer on the answer line provided. No partial credit is given. 1. A simpler expression for (sec θ + 1)(sec θ – 1) is ______________. a. cos2θ b. cot2θ c. sec2θ 2. Which of these is an efficient first step in proving the identity sin x 1 cos x sin x b. 1 cos x sin x c. 1 cos x a. cos x 2 1 cos x sin x 2 sin x cos 2 x cos x sin x csc x 1 cos x csc x 1. ___________ 2 d. tan θ e. sin2θ sin x 1 cos x 1 cos x ? sin x sin x sin x d. 1 cos x 1 cos x sin x sin x e. 1 cos x 1 cos x 2. ___________ 1 1 1 1 cos x cos x cos x cos x 3. How many numbers between 0 and 2π solve the equation 3 cos2x + cos x = 2? a. 0 d. 3 b. 1 e. 4 c. 2 3. ___________ 4. What is the exact value of sin 15°? 4. ___________ a. b. c. 1 4 d. 3 4 e. 3 6 2 4 6 2 4 2 4 5. Which expression is equivalent to cos 47° cos 23° - sin 47° sin 23°? a. cos 70° d. sin 24° b. sin 70° e. tan 70° c. cos 24° 5. ___________ 6. What is the exact value of sin 22.5°? 6. ___________ a. 2 4 d. b. 3 4 e. c. 2 6 2 4 2 2 2 2 2 7. Which expression is equivalent to sin 32°cos 21° - sin 21°cos 32°? a. sin 53° b. sin 11° 7. ___________ c. cos 53° d. cos 11° e. sin 32° 8. The shortest side of a triangle with angles 50°, 60°, and 70° has length 9. What is the length of the longest side? a. 11 d. 12.5 b. 11.5 e. 13 c. 12 8. ___________ 9. In ∆ABC, ∠A = 95°, ∠B = 53°, and c = 12. Find b. a. 8.6 b. 15 c. 18.1 9. _____________ 10. The area of a triangle with sides 7, 8, and 9 is... a. 6 15 b. 12 5 c. 16 3 d. 17 3 e. 18 3 d. 19.2 e. 22.6 10.__________ Open Response: Show your work on each question. Place your final answer on the answer line provided. Partial credit can be earned through relevant, correct work with minor errors. 11. Solve for each missing value in this triangle. If needed, round to the nearest tenth. 11. ________________ 12. Find the area of the triangle below. Round to the nearest tenth. 12. ________________ 13. Write sin 2 x as an algebraic expression of a single trigonometric function. 1 cos x 14. Find all solutions to cos 2x = cos x in the interval [0, 2π). 13._________________ 14. ________________ 15. Find sec θ and csc θ if tan θ = 4 and cos θ < 0. 15._________________ 16. Solve for each missing value in this triangle. If needed, round to the nearest tenth. 16._________________ 17. Use a sum or difference identity to find an exact value of cos 17. ________________ 12 . 18. Simplify the expression into an expression involving 1 trigonmetric function. (sec x 1)(sec x 1) sin 2 x 18. ________________
© Copyright 2026 Paperzz