11. Linearized Equations and Modes of Motion

Linearized Equations of Motion!
Robert Stengel, Aircraft Flight Dynamics!
MAE 331, 2016
Learning Objectives
Develop linear equations to describe
small perturbational motions
Apply to aircraft dynamic equations
Reading:!
Flight Dynamics!
234-242, 255-266, 274-297, 321-325, 329-330!
Copyright 2016 by Robert Stengel. All rights reserved. For educational use only.
http://www.princeton.edu/~stengel/MAE331.html
http://www.princeton.edu/~stengel/FlightDynamics.html
1
Assignment #6"
due: End of day, Nov. 22, 2016!
•! Code the aerodynamic, thrust, and inertial
properties of the HondaJet in AeroModel.m
(MATLAB function for FLIGHTver2.m)
2
Review Questions!
!! Describe the functions of airplane control systems:!
!!
!!
!!
!!
Elevator/Stabilator!
Ailerons/Elevons!
Rudder!
Spoilers!
!! How can you control the yaw dynamics of a flying
wing airplane?!
!! What are compensating ailerons?!
!! Why aren’t all control surfaces “all moving”?!
!! How are the mechanical dynamics of control systems
modeled?!
!! What is a horn balance, and how does it work?!
!! What are control tabs, and how do they work?!
3
How Is System
Response Calculated?
•! Linear and nonlinear, time-varying and timeinvariant dynamic models
–! Numerical integration (
time domain
)
•! Linear, time-invariant (LTI) dynamic models
–! Numerical integration (
time domain
)
–! State transition (
time domain
)
–! Transfer functions (
frequency domain
)
4
Integration Algorithms
T
x (T ) = x ( 0 ) + % f !" x ( t ) ,u ( t ) ,w ( t ) #$dt
•! Exact
0
•! Rectangular (Euler) Integration
x(t k ) = x(t k!1 ) + " x(t k!1 ,t k )
# x(t k!1 ) + f [ x(t k!1 ),u(t k!1 ),w(t k!1 )] " t
" t = t k ! t k!1
•! Trapezoidal (modified Euler) Integration (~MATLABs ode23)
1
[# x1 + # x 2 ]
2
where
x(t k ) ! x(t k"1 ) +
# x1 = f [ x(t k"1 ),u(t k"1 ),w(t k"1 )] # t
# x 2 = f [ x(t k"1 ) + # x1 ,u(t k ),w(t k )] # t
See MATLAB manual for descriptions of ode45 and ode15s
5
Numerical Integration:
MATLAB Ordinary Differential Equation
Solvers*
•!
Explicit Runge-Kutta
Algorithm
•!
Adams-Bashforth-Moulton
Algorithm
•!
Numerical Differentiation
Formula
•!
Modified Rosenbrock
Method
•!
Trapezoidal Rule
•!
Trapezoidal Rule w/Back
Differentiation
* http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/ode23.html.
Shampine, L. F. and M. W. Reichelt, "The MATLAB ODE Suite," SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 61-22.
Nominal and Actual Trajectories
•! Nominal (or reference) trajectory and
control history
{x N (t), u N (t), w N (t)}
for t in [t o ,t f ]
x : dynamic state
u : control input
w : disturbance input
•! Actual trajectory perturbed by
–! Small initial condition variation, !xo(to)
–! Small control variation, !u(t)
{x(t), u(t),w(t)}
for t in [t o ,t f ]
= {x N (t) + !x(t), u N (t) + !u(t),w N (t) + !w(t)}
7
Both Paths Satisfy the
Dynamic Equations
Dynamic models for the actual and the
nominal problems are the same
x! N (t) = f[x N (t),u N (t),w N (t)], x N ( t o ) given
x! (t) = f[x(t),u(t),w(t)], x ( t o ) given
Differences in initial
condition and forcing ...
!x(t o ) = x(t o ) " x N (t o )
#% !u(t) = u(t) " u N (t)
$
%& !w(t) = w(t) " w N (t)
'%
( in *+t o ,t f ,%)
... perturb rate of change
and the state
"$ x! (t) = x! N (t) + !!x(t)
#
$% x(t) = x N (t) + !x(t)
&$
' in )*t o ,t f +,
$(
8
Approximate Neighboring
Trajectory as a Linear Perturbation
to the Nominal Trajectory
x! N (t) = f[x N (t),u N (t),w N (t),t]
x! (t) = x! N (t) + !!x(t) = f[x N (t) + !x(t),u N (t) + !u(t),w N (t) + !w(t),t]
Approximate the new trajectory as the sum of the
nominal path plus a linear perturbation
x! (t) = x! N (t) + !!x(t)
#f
#f
#f
" f[x N (t),u N (t),w N (t),t] +
!x(t) +
!u(t) +
!w(t)
#x
#u
#w
9
Linearized Equation Approximates
Perturbation Dynamics
•! Solve for the nominal and perturbation trajectories
separately
Nominal Equation
x! N (t) = f[x N (t), u N (t), w N (t),t], x N ( t o ) given
Perturbation Equation
dim(x) = n ! 1
dim(u) = m ! 1
dim(w) = s ! 1
$
' $
' $
'
&# f
) &# f
) &#f
)
!w(t))
!!x(t) " & x=x (t ) !x(t)) + & x=x (t ) !u(t)) + &
x=x
(t
)
# x NN (t )
# u NN (t )
# w u=uNN (t )
&% u=u
)( &% u=u
)( &%
)(
w=w N (t )
w=w N (t )
w=w N (t )
dim(!x) = n " 1
dim(!u) = m " 1
dim(!w) = s " 1
" F(t)!x(t)+ G(t)!u(t)+ L(t)!w(t), !x (t o ) given
10
Jacobian Matrices Express Solution
Sensitivity to Small Perturbations
Stability matrix, F, is square
"
$
$
!f
F(t) =
=$
x=x N (t )
! x u=uN (t ) $
w=w N (t )
$
$
dim(F) = n ! n
#
! f1
! f1 %
!
'
! x1
! xn '
! ! ! '
'
! fn
! fn '
!
! x1
! xn ' x=x N (t )
&
u=u N (t )
w=w N (t )
11
Sensitivity to Control Perturbations, G
"
$
$
!f
G(t) =
=$
x=x N (t )
! u u=u
$
N (t )
w=w N (t )
$
$
#
dim(G) = n ! m
! f1
! f1 %
!
'
! u1
! um '
! ! ! '
'
! fn
! fn '
!
! u1
! um ' x=x N (t )
&
u=u N (t )
w=w N (t )
12
Sensitivity to Disturbance
Perturbations, G
"
$
$
!f
L(t) =
=$
x=x N (t )
! w u=u
$
N (t )
w=w N (t )
$
$
#
! f1
! f1 %
!
'
! w1
! ws '
! ! ! '
'
! fn
! fn '
!
! w1
! ws ' x=x N (t )
&
dim(L) = n ! s
u=u N (t )
w=w N (t )
13
Scalar Example of Nominal and
Perturbation Equations
Actual System
x! ( t ) = x ( t ) + 2x 2 ( t ) + 3u ( t ) + 4w 3 ( t )
Nominal System
x! N ( t ) = x N ( t ) + 2x N 2 ( t ) + 3u N ( t ) + 4wN 3 ( t )
Perturbation System
!!x ( t ) = !x ( t ) + 4x N ( t ) !x ( t ) + 3!u ( t ) + 12wN2 ( t ) !w ( t )
14
Comparison of Damped
Linear and Nonlinear Systems
Linear Spring
x!1 (t) = x2 (t)
x!2 (t) = !10x1 (t) ! x2 (t)
Spring
Linear Spring Force vs.
Displacement
Displacement
Rate of Change
Damper
Linear plus Stiffening Cubic Spring
x!1 (t) = x2 (t)
Cubic Spring Force vs.
Displacement
x!2 (t) = !10x1 (t) ! 10x13 (t) ! x2 (t)
Linear plus Weakening Cubic Spring
x!1 (t) = x2 (t)
Cubic Spring Force vs.
Displacement
x!2 (t) = !10x1 (t) + 0.8x13 (t) ! x2 (t)
15
MATLAB Simulation of Linear and
Nonlinear Dynamic Systems
MATLAB Main Script
% Nonlinear and Linear Examples
clear
tspan = [0 10];
xo = [0, 10];
[t1,x1 = ode23('NonLin',tspan,xo);
xo = [0, 1];
[t2,x2] = ode23('NonLin',tspan,xo);
xo = [0, 10];
[t3,x3] = ode23('Lin',tspan,xo);
xo = [0, 1];
[t4,x4] = ode23('Lin',tspan,xo);
subplot(2,1,1)
plot(t1,x1(:,1),'k',t2,x2(:,1),'b',t3,x3(:,1),'r',t4,x4(:,1),'g')
ylabel('Position'), grid
subplot(2,1,2)
plot(t1,x1(:,2),'k',t2,x2(:,2),'b',t3,x3(:,2),'r',t4,x4(:,2),'g')
xlabel('Time'), ylabel('Rate'), grid
Linear System
x˙1 (t) = x 2 (t)
x˙ 2 (t) = "10x1 (t) " x 2 (t)
function xdot = Lin(t,x)
% Linear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) - x(2)];
Nonlinear System
x˙1 (t) = x 2 (t)
3
x˙ 2 (t) = "10x1 (t) + 0.8x1 (t) " x 2 (t)
function xdot = NonLin(t,x)
% Nonlinear Ordinary Differential Equation
% x(1) = Position
% x(2) = Rate
xdot = [x(2)
-10*x(1) + 0.8*x(1)^3 - x(2)];
16
Linear and Stiffening
Cubic Springs: Small and
Large Initial Conditions
Cubic term
17
Linear and nonlinear responses are indistinguishable with small initial condition
Linear and Weakening Cubic Springs:
Small and Large Initial Conditions
Cubic term
18
Linear, Time-Varying (LTV)
Approximation of
Perturbation Dynamics!
19
Stiffening Linear-Cubic
Spring Example
Nonlinear, time-invariant (NTI) equation
x!1 (t) = f1 = x2 (t)
x!2 (t) = f2 = !10x1 (t) ! 10x13 (t) ! x2 (t)
Integrate equations to produce nominal path
! x (0) $
# 1N
&'
# x2 (0) &
" N
%
! f
1
( ## f N
2N
0 "
tf
$
& dt '
&
%
! x (t) $
# 1N
& in !0,t $
" f%
# x2 (t) &
" N
%
Analytical evaluation of partial derivatives
! f1
! f1
! f1
! f1
= 0;
=1
= 0;
=0
! x1
! x2
!u
!w
! f2
! f2
= "10 " 30x1N 2 (t);
= "1
! x1
! x2
! f2
! f2
= 0;
=0
!u
!w
20
Nominal (NTI) and Perturbation
(LTV) Dynamic Equations
Nonlinear, time-invariant (NTI) nominal equation
x! N (t) = f[x N (t)], x N (0) given
!!!!!!!!!!!!!!!!
x!1N (t) = x2 N (t)
x!2 N (t) = !10x1N (t) ! 10x1N 3 (t) ! x2 N (t)
Example
! x (0) $ !
$
# 1N
&=# 0 &
# x2 (0) & " 9 %
" N
%
Perturbations approximated by linear, time-varying (LTV) equation
!!x(t) = F(t)!x(t), !x(0) given
""""""""""""""""
# !!x1 (t) & #
0
%
(=%
2
%$ !!x2 (t) '( %$ " 10 + 30x1N (t)
(
)
1 & # !x1 (t) &
(%
(
"1 ( % !x2 (t) (
$
'
'
Example
" !x (0) % "
%
1
$
'=$ 0 '
$# !x2 (0) '& # 1 &
21
Comparison of Approximate and Exact Solutions
Initial Conditions
x2 N (0) = 9
!x2 (0) = 1
x2 N (t)+ !x2 (t) = 10
x2 (t) = 10
x N (t)
!x(t)
x N (t)+ !x(t)
x(t)
x! N (t)
!!x(t)
x! N (t) + !!x(t)
x! (t)
22
Suppose Nominal Initial Condition
is Zero
Nominal solution remains at equilibrium
x! N (t) = f[x N (t)], x N (0) = 0, x N (t) = 0 in [ 0, ! ]
Perturbation equation is linear and time-invariant (LTI)
" !!x (t) % "
0
1 %" !x1 (t) %
1
'$
$
'=$
'
"
%
(1
(10
(
30
0
(
)
'&$# !x2 (t) '&
$# !!x2 (t) '& $# #
&
23
Separation of the!
Equations of Motion into
Longitudinal and LateralDirectional Sets!
24
Rigid-Body Equations of
Motion (Scalar Notation)
Grumman F9F
State Vector
•!
Rate of change of
Translational Velocity
•!
Rate of change of
Translational Position
u! = X / m ! g sin " + rv ! qw
v! = Y / m + g sin # cos" ! ru + pw
w! = Z / m + g cos # cos" + qu ! pv
x! I = ( cos! cos" ) u + ( # cos $ sin " + sin $ sin ! cos" ) v + ( sin $ sin " + cos $ sin ! cos" ) w
y! I = ( cos! sin " ) u + ( cos $ cos" + sin $ sin ! sin " ) v + ( # sin $ cos" + cos $ sin ! sin " ) w
z!I = ( # sin ! ) u + ( sin $ cos! ) v + ( cos $ cos! ) w
•!
Rate of change of
Angular Velocity
(Ixy = Iyz = 0)
(
{ (
(
q! = "# M ! ( I xx ! I zz ) pr ! I xz p 2 ! r 2
(
{ (
r! = I xz L + I xx N ! I xz I yy ! I xx ! I zz
•!
Rate of change of
Angular Position
)
)$% ÷ I
) r + "# I
(
)
})
(
)
(
)
})
(
)
p! = I zz L + I xz N ! I xz I yy ! I xx ! I zz p + "# I xz2 + I zz I zz ! I yy $% r q ÷ I xx I zz ! I xz2
yy
2
xz
+ I xx I xx ! I yy $% p q ÷ I xx I zz ! I xz2
!! = p + ( q sin ! + r cos ! ) tan "
"! = q cos ! # r sin !
$! = ( q sin ! + r cos ! ) sec "
!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#"
x1 $
& !
x2 & #
& #
x3 & #
x4 & #
& #
x5 & #
x6 & #
&=#
x7 & #
x8 & ##
&
x9 & #
& #
x10 & #
x11 & #
& #"
x12 &%
u
v
w
x
y
z
p
q
r
'
(
)
$
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&%
25
Reorder the State Vector
!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#"
x1 $
& !
x2 & #
& #
x3 & #
x4 & #
& #
x5 & #
x6 & #
&=#
x7 & #
x8 & ##
&
x9 & #
& #
x10 & #
x11 & #
& #"
x12 &%
u
v
w
x
y
z
p
q
r
'
(
)
$
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&%
First six elements of
the state are
longitudinal variables
Second six elements of
the state are lateraldirectional variables
!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#"
x1 $
&
x2 &
x3 &
&
x4 &
&
x5 &
! x Lon
x6 &
& =#
x7 &
#" x Lat'Dir
x8 &
&
x9 &
x10 &
&
x11 &
&
x12 &
% new
!
#
#
#
#
#
#
$ #
&=#
&% #
#
#
#
#
#
#
#"
26
u
w
x
z
q
(
v
y
p
r
)
*
$
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&%
Longitudinal Equations of Motion
Dynamics of velocity, position, angular rate,
and angle primarily in the vertical plane
u! = X / m ! gsin " + rv ! qw
" x!1 = f1
w! = Z / m + g cos # cos" + qu ! pv " x!2 = f2
x! I = ( cos! cos" ) u +
( # cos $ sin" + sin $ sin! cos" ) v + (sin $ sin" + cos $ sin! cos" ) w
z!I = ( # sin ! ) u + ( sin $ cos! ) v + ( cos $ cos! ) w
q! = "# M ! ( I xx ! I zz ) pr ! I xz ( p 2 ! r 2 ) $% ÷ I yy
&! = q cos ' ! r sin '
" x! 3 = f3
" x! 4 = f4
" x!5 = f5
" x!6 = f6
x! Lon (t) = f[x Lon (t), u Lon (t), w Lon (t)]
27
Lateral-Directional
Equations of Motion
Dynamics of velocity, position, angular rate,
and angle primarily out of the vertical plane
v! = Y / m + gsin ! cos" # ru + pw
" x! 7 = f7
( # sin ! cos$ + cos ! sin" sin$ ) w
" x!8 = f8
y! I = ( cos" sin$ ) u + ( cos ! cos$ + sin ! sin " sin$ ) v +
(
{ (
)
(
})
)$% p} q ) ÷ ( I
)
p! = I zz L + I xz N ! I xz I yy ! I xx ! I zz p + "# I xz2 + I zz I zz ! I yy $% r q ÷ ( I xx I zz ! I xz2 ) " x!9 = f9
(
{ (
)
(
r! = I xz L + I xx N ! I xz I yy ! I xx ! I zz r + "# I xz2 + I xx I xx ! I yy
I ! I xz2 ) " x!10 = f10
xx zz
!! = p + ( qsin ! + r cos ! ) tan " " x!11 = f11
#! = ( qsin ! + r cos ! ) sec"
" x!12 = f12
x! LD (t) = f[x LD (t), u LD (t), w LD (t)]
28
Sensitivity to Small Motions
(12 x 12) stability matrix for the entire system
"
$
$
F(t) = $
$
$
$
#
! f1
! x1
...
! f12
! x1
! f1 %
'
! x12 '
... ... '
'
! f12 '
...
! x12 '
&
...
Four (6 x 6) blocks distinguish longitudinal and lateral-directional effects
Effects of lateral-directional
perturbations on longitudinal motion
Effects of longitudinal perturbations
on longitudinal motion
" F
Lon
F = $ Lat!Dir
$ FLon
#
Effects of longitudinal perturbations
on lateral-directional motion
Lon
%
FLat!Dir
'
FLat!Dir '
&
Effects of lateral-directional perturbations
on lateral-directional motion
29
Sensitivity to Small Control Inputs
(12 x 6) control matrix for the entire system
# ! f1
! f1
%
!" E
!" T
%
! f2
% ! f2
!" E
!" T
G(t) = %
...
...
%
% !f
! f12
12
%
!"
E
!" T
$
! f1
! f1
! f1
! f1
&
!" SF (
(
! f2
! f2
! f2
! f2
(
!" F
!" A
!" R
!" SF (
...
...
...
...
(
(
! f12
! f12
! f12
! f12
!" F
!" A
!" R
!" SF ('
!" F
!" A
!" R
Four (6 x 3) blocks distinguish longitudinal and lateraldirectional control effects
Effects of longitudinal controls
on longitudinal motion
" G
Lon
G = $ Lat!Dir
$ G Lon
#
Effects of longitudinal controls
on lateral-directional motion
Effects of lateral-directional
controls on longitudinal motion
%
G Lon
Lat!Dir
'
G Lat!Dir '
&
Effects of lateral-directional controls
on lateral-directional motion
30
Sensitivity to Small Disturbance Inputs
Disturbance input vector and perturbation
!
#
#
#
w(t) = #
#
#
#
#
"
uw (t) $
&
ww (t) &
qw (t) &
&
vw (t) &
&
pw (t) &
rw (t) &
%
Axial wind, m / s
Normal wind, m / s
Pitching wind shear, deg / s or rad / s
Lateral wind, m / s
Rolling wind shear, deg / s or rad / s
Yawing wind shear, deg / s or rad / s
"
$
$
$
!w(t) = $
$
$
$
$
#
!uw (t) %
'
!ww (t) '
!qw (t) '
'
!vw (t) '
'
!pw (t) '
!rw (t) '
&
Four (6 x 3) blocks distinguish longitudinal and
lateral-directional effects
Effects of longitudinal disturbances
on longitudinal motion
" L
Lon
L = $ Lat!Dir
$ L Lon
#
Effects of longitudinal disturbances
on lateral-directional motion
Effects of lateral-directional
disturbances on longitudinal motion
%
LLon
Lat!Dir
'
L Lat!Dir '
&
Effects of lateral-directional disturbances 31
on lateral-directional motion
Decoupling Approximation
for Small Perturbations
from Steady, Level Flight!
32
Restrict the Nominal Flight Path
to the Vertical Plane
Nominal State Vector
Nominal lateral-directional motions are zero
!
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#"
x! Lat ! DirN = 0
x Lat ! DirN = 0
Nominal longitudinal equations reduce to
u! N = X / m ! gsin " N ! qN wN
w! N = Z / m + g cos" N + qN u N
x! I N = ( cos" N ) u N + ( sin " N ) wN
z!I N = ( ! sin " N ) u N + ( cos" N ) wN
q! N =
M
I yy
"!N = qN
x1 $
&
x2 &
x3 &
&
x4 &
&
x5 &
! x Lon
x6 &
& =#
x7 &
#" x Lat'Dir
x8 &
&
x9 &
x10 &
&
x11 &
&
x12 &
%N
$
&
&% N
uN $
&
wN &
xN &
&
zN &
&
qN &
(N &
&
0 &
0 &
0 &
&
0 &
0 &
0 &%
!
#
#
#
#
#
#
#
=#
#
#
#
#
#
#
#
#
"
33
Restrict the Nominal Flight Path to
Steady, Level Flight
•!
Specify nominal airspeed (VN) and altitude (hN = –zN)
•!
Calculate conditions for trimmed (equilibrium) flight
–! See Flight Dynamics and FLIGHT program for a
solution method
Trimmed State Vector
is constant
0 = X / m ! gsin " N ! qN wN
0 = Z / m + g cos" N + qN u N
VN = ( cos" N ) u N + ( sin " N ) wN
0 = ( ! sin " N ) u N + ( cos" N ) wN
0=
M
I yy
0 = qN
"
$
$
$
$
$
$
$#
"
uTrim
%
$
'
wTrim
$
'
$ V t (t
'
0)
$ N(
' =$
zN
'
$
'
0
$
'
! &Trim $ !
Trim
#
u
w
x
z
q
%
'
'
'
'
'
'
'
'
&
34
Small Longitudinal and LateralDirectional Perturbation Effects
•! Assume the airplane is symmetric and its
nominal path is steady, level flight
–! Small longitudinal and lateral-directional
perturbations are approximately uncoupled from
each other
–! (12 x 12) system is
•! block diagonal
•! constant, i.e., linear, time-invariant (LTI)
•! decoupled into two separate (6 x 6) systems
" FLon
F=$
$# 0
0
FLat!Dir
%
'
'&
" G Lon
G=$
$# 0
0
G Lat!Dir
%
'
'&
" L Lon
L=$
$# 0
0
L Lat!Dir
%
'
'&
35
(6 x 6) LTI Longitudinal
Perturbation Model
Dynamic Equation
!!x Lon (t) = FLon !x Lon (t) + G Lon !u Lon (t) + L Lon !w Lon (t)
State Vector
!x Lon
"
$
$
$
=$
$
$
$
$
#
!x1 %
" !u %
'
'
$
!x2 '
!w '
$
!x3 '
' = $ !x '
$ !z '
!x4 '
'
$
'
$ !q '
!x5 '
$ !( '
&
#
!x6 '
& Lon
Control
Vector
!u Lon
# !" T &
= %% !" E ((
%$ !" F ('
Disturbance
Vector
!w Lon
" !uwind
$
= $ !wwind
$ !q
wind
#
%
'
'
'
&
36
LTI Longitudinal
Response to Initial Pitch Rate
37
(6 x 6) LTI Lateral-Directional
Perturbation Model
Dynamic Equation
!!x Lat " Dir (t) = FLat " Dir !x Lat " Dir (t) + G Lat " Dir !u Lat " Dir (t) + L Lat " Dir !w Lat " Dir (t)
State Vector
!x Lat " Dir
#
%
%
%
=%
%
%
%
%
$
!x1 &
# !v
(
%
!x2 (
% !y
(
% !p
!x3
(
=%
!x4 (
% !r
(
% !)
!x5 (
%
!*
!x6 (
' Lat " Dir %$
&
(
(
(
(
(
(
(
('
Control
Vector
!u Lat " Dir
$ !# A '
= && !# R ))
&% !# SF )(
Disturbance
Vector
!w Lon
" !vwind
$
= $ !pwind
$ !r
wind
#
38
%
'
'
'
&
LTI Lateral-Directional Response
to Initial Yaw Rate
39
Next Time:!
Longitudinal Dynamics!
Reading:!
Flight Dynamics!
452-464, 482-486!
Airplane Stability and Control!
Chapter 7!
Learning Objectives
•!
•!
•!
•!
6th-order -> 4th-order -> hybrid equations
Dynamic stability derivatives
Long-period (phugoid) mode
Short-period mode
40
Supplemental
Material
41
How Do We Calculate the Partial
Derivatives?
F(t) =
!f
!x
x = x N (t )
u= u N (t )
w = w N (t )
G(t) =
!f
! u xu== xuNN (t(t ))
w = w N (t )
L(t) =
!f
!w
x = x N (t )
u= u N (t )
w = w N (t )
•! Numerically
–! First differences in f(x,u,w)
•! Analytically
–! Symbolic evaluation of analytical
models of F, G, and L
42
Numerical Estimation of the
Jacobian Matrix, F(t)
! f1
(t ) "
!x1
! f2
(t ) "
!x1
$ ( x + #x )
1
& 1
x2
&
f1 &
!
&
xn
&%
'
$ ( x * #x )
1
)
& 1
x2
)
&
) * f1 &
!
)
&
xn
)(
&%
2#x1
$ ( x + #x )
1
& 1
x2
&
f2 &
!
&
xn
&%
'
$ ( x * #x )
1
)
& 1
x2
)
&
) * f2 &
!
)
&
xn
)(
&%
2#x1
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
;
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
;
! f1
(t ) "
!x2
! f2
(t ) "
!x2
$
x1
&
& ( x + #x2 )
f1 & 2
!
&
xn
&%
'
$
x1
)
&
)
& ( x2 * #x2 )
) * f1 &
!
)
&
xn
)(
&%
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
2#x2
$
x1
&
& ( x + #x2 )
f2 & 2
!
&
xn
&%
'
$
x1
)
&
)
& ( x2 * #x2 )
) * f2 &
!
)
&
xn
)(
&%
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
2#x2
Continue for all n x n elements of F(t)
43
Numerical Estimation of the
Jacobian Matrix, G(t)
! f1
(t ) "
!u1
! f2
(t ) "
!u1
$ ( u + #u )
1
& 1
u2
&
f1 &
!
&
um
&%
'
$ ( u * #u )
1
)
& 1
u2
)
&
) * f1 &
!
)
&
um
)(
&%
2#u1
$ ( u + #u )
1
& 1
u2
&
f2 &
!
&
um
&%
'
$ ( u * #u )
1
)
& 1
u2
)
&
) * f2 &
!
)
&
um
)(
&%
2#u1
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
'
)
)
)
)
)( x=x N (t )
u=u N (t )
;
w=w N (t )
;
! f1
(t ) "
!u2
! f2
(t ) "
!u2
$
u1
&
& ( u + #u2 )
f1 & 2
!
&
um
&%
'
$
u1
)
&
)
& ( u2 * #u2 )
) * f1 &
!
)
&
um
)(
&%
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
2#u2
$
u1
&
& ( u + #u2 )
f2 & 2
!
&
um
&%
'
$
u1
)
&
)
& ( u2 * #u2 )
) * f2 &
!
)
&
um
)(
&%
'
)
)
)
)
)( x=x N (t )
u=u N (t )
2#u2
Continue for all n x m elements of G(t)
44
w=w N (t )
Numerical Estimation of the
Jacobian Matrix, L(t)
! f1
(t ) "
!w1
! f2
(t ) "
!w1
$ ( w + #w )
1
1
&
w2
&
f1 &
!
&
ws
&%
'
$ ( w * #w )
1
1
)
&
w2
)
&
) * f1 &
!
)
&
ws
)(
&%
2#w1
$ ( w + #w )
1
1
&
w2
&
f2 &
!
&
ws
&%
'
$ ( w * #w )
1
1
)
&
w2
)
&
) * f2 &
!
)
&
ws
)(
&%
2#w1
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
'
)
)
)
)
)( x=x N (t )
u=u N (t )
;
w=w N (t )
;
! f1
(t ) "
!w2
! f2
(t ) "
!w2
$
w1
&
& ( w2 + #w2 )
f1 &
!
&
ws
&%
'
$
w1
)
&
)
& ( w2 * #w2 )
) * f1 &
!
)
&
ws
)(
&%
2#w2
$
w1
&
& ( w2 + #w2 )
f2 &
!
&
ws
&%
'
$
w1
)
&
)
& ( w2 * #w2 )
) * f2 &
!
)
&
ws
)(
&%
2#w2
Continue for all n x s elements of L(t)
45
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )
'
)
)
)
)
)( x=x N (t )
u=u N (t )
w=w N (t )