Mathematics 3 Prof. F. Brock Homework 8, solutions 1. Evaluate the complex line integral Z f (z) dz γ in the following cases. (a) f (z) = z 3 , γ: part of the parabola x = y 2 , that connects the points 0 and 1 + i in the complex plane. (b) f (z) = z + 2z, γ: the circular arc |z| = 2, −π/2 ≤ arg z ≤ π/2. Solution: (a) An antiderivative of f (z) = z 3 is F (z) = z 4 /4. Since f is holomorphic on C, we find that Z (1 + i)4 z 3 dz = F (1 + i) − F (0) = = −1. 4 γ (b) We parametrize γ by z = 2eit , (−π/2 ≤ t ≤ π/2), so that dz = 2i eit dt, and hence Z π/2 Z π/2 Z it −it it (4i e2it + 8i) dt (2e + 4e )2ie dt = (z + 2z) dz = −π/2 −π/2 γ π/2 = 2(eπi − e−πi ) + 8πi = 8πi. 2e2it + 8it = −π/2 2.(a) Show the identities sin z = sin x cosh y + i cos x sinh y, cos z = cos x cosh y − i sin x sinh y. (b) Evaluate the values cos(2 − i), Log (2 − 3i) and (3 + 4i)i . Solution: to (b): There holds eiz = ∞ X (iz)n n=0 n! = ∞ X k=0 (−1)k ∞ X z 2k z 2k+1 +i (−1)k = cos z + i sin z. (2k)! (2k + 1)! k=0 Setting z = −iy, and z = iy, we obtain ey = cos(iy) − i sin(iy), and e−y = cos(iy) + i sin(iy), respectively. This implies cosh y = cos(iy), sinh y = −i sin(iy), and i sinh y = sin(iy). Now the Theorems of Addition for trigonometric functions give sin z = sin(x + iy) = sin x cos(iy) + cos x sin(iy) = sin x cosh y + i cos x sinh y and cos z = cos(x+iy) = cos x cos(iy)−sin x sin(iy) = cos x cosh y −i sin x sinh y. to (a): Using (b) we have cos(2 − i) = cos 2 cosh 1 + i sin 2 sinh 1. By the definition of the Logarithm it follows that Log (2 − 3i) = log(2 − 3i) + i 2kπ = ln |2 − 3i| + i(arg(2 − 3i) + 2kπ) √ 3 = ln 13 + i(arctan + 2kπ), (k ∈ Z). 2 Finally we have 4 (3 + 4i)i = ei log(3+4i) = ei (ln 5+i arctan 3 4 4 = ei ln 5−arctan 3 = e− arctan 3 (cos(ln 5) + i sin(ln 5)). 3. Find the Taylor expansions of the following functions: (a) e2z−1 , into powers of z + 2. 1 , into powers of z. (b) (z − 1)2 (z + 2) Solution: (a) There holds e 2z−1 2(z+2)−5 =e −5 2(z+2) =e e =e −5 ∞ X 2n (z + 2)n . n! n=0 (b) Using partial fractions: Since 1 d = 2 (1 − z) dz = ∞ X n=0 1 1−z d = dz (n + 1) z n , ∞ X n=0 ! z n = ∞ X n=1 n z n−1 we obtain 1 1 1 1 1 1 1 = − + 2 (z − 1) (z + 2) 9 z + 2 9 z − 1 3 (z − 1)2 1 1 1 1 3 = + + 9 2 1 + z2 1 − z (1 − z)2 ! ∞ ∞ ∞ X 1 1 X z n X n − + z +3 (n + 1) z n = 9 2 n=0 2 n=0 n=0 ∞ n X (−1) 1 = + 1 + 3(n + 1) z n n+1 9 n=0 2 ∞ 1 X (−1)n = + 3n + 4 z n . 9 n=0 2n+1 Using Cauchy’s product formula: As above we have ∞ X 1 = (n + 1) z n (z − 1)2 n=0 ∞ and X (−1)n 1 = zn. z + 2 n=0 2n+1 By Cauchy’s product formula we obtain finally ∞ X n k X 1 n−k (−1) = (n − k + 1) z zk k+1 (z − 1)2 (z + 2) 2 n=0 k=0 = ∞ X n=0 Since n X n n n + 1 X (−1)k 1 X (−1)k − k 2 k=0 2k 2 k=0 2k wk = k=0 wn+1 − 1 w−1 and n X k=0 n kw k ∂ X k ∂ = w w =w ∂w k=0 ∂w = wn+1 − 1 w−1 n wn+2 − (n + 1) wn+1 + w (w − 1)2 ! zn. we find, for w = −1/2 n n n + 1 X (−1)k 1 X (−1)k − k 2 k=0 2k 2 k=0 2k (−1)n+2 2 n + 1 (−1)n+1 (−1)n+1 1 n −1 − − (n + 1) n+1 − = − 3 2n+1 9 2n+2 2 2 n+2 n+2 n+2 1 (−1) (−1) (−1) = (3 n + 3) + 3n + 3 − n − (2n + 2) n+1 + 1 9 2n+1 2n+1 2 n 1 (−1) + 3n + 4 , = 9 2n+1 that is, ∞ 1 1X = (z − 1)2 (z + 2) 9 n=0 (−1)n + 3n + 4 2n+1 zn. 4. Evaluate the complex line integral Z cos z dz 2 γ z(z − 2) in the following cases. The closed curves below are oriented counterclockwise. (a) γ: the circle |z| = 1. (b) γ: the circle |z − 2| = 1. (c) γ: the circle |z − 2i| = 1. Hint: Use Cauchy’s integral theorem and Cauchy’s integral formula. Solution: Decomposition into partial fractions gives 11 1 1 1 1 1 = − + , 2 z(z − 2) 4 z 4 z − 2 2 (z − 2)2 that is, Z cos z dz 2 γ z(z − 2) Z Z Z 1 cos z 1 cos z 1 cos z = dz − dz + dz 4 γ z 4 γ z−2 2 γ (z − 2)2 1 1 1 =: I1 − I2 + I3 . 4 4 2 (a) The integrands of I2 and I3 are holomorphic for |z| ≤ 1. Hence both integrals are = 0 by Cauchy’s integral theorem. Further, Cauchy’s integral formula gives I1 = 2 π i cos 0 = 2 π i, hence we have that Z cos z πi I= dz = . 2 2 γ z(z − 2) I = (b) The integrand of I1 is holomorphic for |z − 2| ≤ 1, and hence I1 = 0. Further, Cauchy’s integral formulas give I2 = 2 π i cos 2 and I3 = −2 π i sin 2, hence Z cos z iπ I= cos 2 − i π sin 2. dz = − 2 2 γ z(z − 2) (c) All three integrands are holomorphic for |z − 2i| ≤ 1, so that I1 = I2 = I3 = 0 by Cauchy’s integral theorem. Hence Z cos z I= dz = 0. 2 γ z(z − 2)
© Copyright 2026 Paperzz