Slide 1 ___________________________________ Colligative Properties Practical uses of solutions ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 2 Units of Concentration Whatever units you use, the goal is the same: specify the quantity of 1 component (the solutes) relative to the quantity of another component (the solvent). ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 3 Common Units % by mass % by volume ___________________________________ ___________________________________ Mole % ppm (parts per million) ___________________________________ Molarity (M) Molality (m) ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 4 Common Units ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 5 Solute as part of a solution Note that, with the exception of molality, all of the units of concentration are expressed as some amount of solute compared to some amount of solution. All the units of conversation are easily convertible, although sometimes you may need to know another piece of information (molar mass, density, etc.) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 6 Molarity Molarity is probably the most common unit of concentration in chemistry. ___________________________________ ___________________________________ Why is that? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 7 Molarity Molarity is probably the most common unit of concentration in chemistry. ___________________________________ ___________________________________ Why is that? UNITS! UNITS! UNITS! ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 8 Molarity Molarity (M) = moles solute L solution ___________________________________ ___________________________________ This is both a chemically relevant unit and a practically relevant unit. L solution is very easy to measure in the lab! MOLES! MOLES! MOLES! ___________________________________ Reactions occur based on the relative number of moles. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 9 % by mass This is one of the easiest units to use. ___________________________________ ___________________________________ Why? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 10 % by mass This is one of the easiest units to use. ___________________________________ ___________________________________ Why? UNITS! UNITS! UNITS! ___________________________________ Mass is easy to measure in the lab! ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 11 % by mass % by mass = g solute 100 g solution This is easy to use, but not as chemically relevant as Molarity. After all, it’s all about the MOLES! MOLES! MOLES! Is this a problem? Not at all, it is easy to convert these units, but you need to know a few other things. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 12 Converting M to % by mass % by mass = g solute 100 g solution M = moles solute L solution What do we need to know to be able to convert from one to the other? UNITS! UNITS! UNITS! They shall lead the way. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 13 Converting M to % by mass Compare the units: ___________________________________ ___________________________________ g solute 100 g solution Moles solute Liter solution ___________________________________ What do you see? Both numerators refer only to solute. Both denominators refer to the whole solution. PLEASE! PLEASE! PLEASE! Pay attention to the entire unit – it’s not “grams” it’s “grams of something” ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 14 Converting M to % by mass g solute 100 g solution ___________________________________ ___________________________________ Moles solute Liter solution If I want to convert the numerators, what do I need to do? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 15 Converting M to % by mass g solute 100 g solution Moles solute Liter solution If I want to convert the numerators, what do I need to do? (Do I need to say UNITS! UNITS! UNITS! again)? g solute ___________________________________ ___________________________________ moles solute What’s the conversion factor? g solute Or moles solute moles solute g solute What do we call this? Molar mass! ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 16 ___________________________________ Converting M to % by mass g solute 100 g solution x moles solute = moles solute g solute 100 g solution ___________________________________ Or, if you’re going the other way: moles solute L solution x g solute = moles solute g solute L solution What about the denominator? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 17 Converting M to % by mass moles solute 100 g solution g solute Liter solution ___________________________________ ___________________________________ 100 g solution L solution What’s the conversion factor? g solution OR L solution L solution g solution. What’s this called? Density! We need to know the density of the solution and the molar mass of the solute to be able to convert M to % by mass. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 18 Sample problem You have a 1.2 M solution of NaCl in water. What is its % by mass given that the density of 1.2 M NaCl is 1.08 g/mL? What do we do? Simply convert the units! ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 19 ___________________________________ Sample problem You have a 1.2 M solution of NaCl in water. What is its % by mass given that the density of 1.2 M NaCl is 1.08 g/mL? 1.2 mol NaCl L solution g NaCl 100 g solution ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 20 ___________________________________ Sample problem You have a 1.2 M solution of NaCl in water. What is its % by mass given that the density of 1.2 M NaCl is 1.08 g/mL? 1.2 mol NaCl x 58.453 g NaCl L solution mol NaCl = 70.143 g NaCl L solution 70.143 g NaCl L solution = ? g NaCl 100 g solution ___________________________________ ___________________________________ We have density in g/mL, but we have volume in L, so…? ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 21 ___________________________________ Sample problem You have a 1.2 M solution of NaCl in water. What is its % by mass given that the density of 1.2 M NaCl is 1.08 g/mL? 1.2 mol NaCl x 58.453 g NaCl L solution mol NaCl 70.143 g NaCl L solution = 70.143 g NaCl L solution x 1 L solution x 1 mL solution = 0.06495 g NaCl 1000 mL solution 1.08 g solution g solution To get from g solution to 100 g solution??? Just multiply by 100. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 22 ___________________________________ Sample problem You have a 1.2 M solution of NaCl in water. What is its % by mass given that the density of 1.2 M NaCl is 1.08 g/mL? 1.2 mol NaCl x 58.453 g NaCl L solution mol NaCl 70.143 g NaCl x 1 L solution x L solution 1000 mL solution = 1 mL solution 1.08 g solution 70.143 g NaCl L solution = 0.06495 g NaCl * 100 g solution 6.495 g NaCl/100 g solution OR 6.495% by mass (6.5% by mass to the correct number of sig figs.) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 23 ___________________________________ Slightly more complicated problem You have a 2.5 M solution of NaCl in water. What is its % by mass given that the density of 1.0 M NaCl is 1.07 g/mL, the density of 3.0 M NaCl is 1.10 g/mL and the density of 5.0 M NaCl is 1.13 g/mL? ___________________________________ This is a more common real-life example. There are tables of solution densities, but they don’t have an infinite number of values. So, what do we do…? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 24 ___________________________________ Slightly more complicated problem You have a 2.5 M solution of NaCl in water. What is its % by mass given that the density of 1.0 M NaCl is 1.07 g/mL, the density of 3.0 M NaCl is 1.10 g/mL and the density of 5.0 M NaCl is 1.13 g/mL? 2 options: Use the 3.0 M as being “close enough”. Do a linear interpolation to determine the approximate value at 2.5 M. ___________________________________ ___________________________________ What is a “linear interpolation”? ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 25 ___________________________________ Linear interpolation Assume that the data should have a linear trend, plot the line of the data you do have and find the data you don’t have? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 26 ___________________________________ Linear interpolation Density (g/mL) Assume that the data should have a linear trend, plot the line of the data you do have and find the data you don’t have? ___________________________________ 1.14 1.13 1.12 1.11 1.1 1.09 1.08 1.07 1.06 ___________________________________ 0 1 2 3 4 5 6 Molarity So, the density appears to be about 1.09 g/mL at 2.5 M. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 27 ___________________________________ The rest of the problem is the same. You have a 2.5 M solution of NaCl in water. What is its % by mass given that the density of 1.0 M NaCl is 1.06 g/mL, the density of 3.0 M NaCl is 1.09 g/mL and the density of 5.0 M NaCl is 1.13 g/mL? 2.5 mol NaCl x 58.453 g NaCl L solution mol NaCl 146.13 g NaCl L solution = ___________________________________ 146.13 g NaCl L solution x 1 L solution x 1 mL solution = 0.134 g NaCl * 100 1000 mL solution 1.09 g solution g solution ___________________________________ =13.4 g NaCl = 13.4% NaCl by mass 100 g solution ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 28 Colligative Property A colligative property is a property that depends ONLY on the amount of the substance present NOT on the identity of the substance. In other words, it doesn’t matter if it is salt, sugar, gasoline, or tennis balls – it will behave the same way! ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 29 Solution homogeneous mixtures composition may vary from one sample to another appears to be one substance, though really contains multiple materials most homogeneous materials we encounter are actually solutions nature has a tendency toward spontaneous mixing e.g., air and sea water generally, uniform mixing is more energetically favorable ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 30 Solutions solute is the dissolved substance seems to “disappear” “takes on the state” of the solvent solvent is the substance solute dissolves in does not appear to change state when both solute and solvent have the same state, the solvent is the component present in the highest percentage solutions in which the solvent is water are called aqueous solutions ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 31 ___________________________________ ..\chem152\dissolve NaCl.MOV ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 32 Intermolecular Forces and the Solution Process Enthalpy of Solution energy changes in the formation of most solutions also involve differences in attractive forces between particles must overcome solute-solute attractive forces endothermic at least some of the energy to do this comes from making new solute-solvent attractions ___________________________________ endothermic must overcome some of the solvent-solvent attractive forces ___________________________________ ___________________________________ exothermic ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 33 Intermolecular Attractions ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 34 ___________________________________ Relative Interactions and Solution Formation Solute-to-Solute + Solvent-toSolvent Solute-to-Solvent > Solute-to-Solvent Solute-to-Solute + = Solvent-toSolvent Solution Forms ___________________________________ Solution Forms when the solute-to-solvent attractions are weaker Solute-to-Solute Solution May than the sum of the+solute-to-solute and solventSolute-to-Solvent < May Not if to-solvent attractions, the solution will or only form Solvent-toForm the energy difference is small enough to be Solvent overcome by the entropy ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 35 Solution Interactions ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 36 Energetics of Solution Formation overcome attractions between the solute particles – endothermic overcome some attractions between solvent molecules – endothermic for new attractions between solute particles and solvent molecules – exothermic the overall DH depends on the relative sizes of the DH for these 3 processes DHsol’n = Dhsolute+ DHsolvent + DHmix ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 37 Solution Process ___________________________________ ___________________________________ ___________________________________ 1. add energy in to overcome solute-solute attractions 3. form new solute-solvent attractions, releasing energy 2. add energy in to overcome some solvent-solvent attractions ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 38 Energetics of Solution Formation if the total energy cost for breaking attractions between particles in the pure solute and pure solvent is greater less thanthan the the energy released in making the new attractions between the solute and solvent, the overall process will be endothermic exothermic ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 39 Heats of Hydration for aqueous ionic solutions, the energy added to overcome the attractions between water molecules and the energy released in forming attractions between the water molecules and ions is combined into a term called the heat of hydration attractive forces in water = H-bonds attractive forces between ion and water = ion-dipole DHhydration = heat released when 1 mole of gaseous ions dissolves in water ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 40 Heat of Hydration ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 41 Some Examples: Vapor Pressure Reduction Freezing Point Depression Related to boiling point ___________________________________ ___________________________________ Salt on the road Anti-freeze in your radiator Boiling Point Elevation Osmotic Pressure Anti-freeze in your radiator ___________________________________ Membrane diffusion The Great Sugar Fountain! ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 42 Vapor Pressure Reduction What is “vapor pressure”? Vapor pressure is the amount (P is proportional to n for ideal gases) of gas A that is in equilibrium above the surface of liquid A. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 43 Vapor Pressure ___________________________________ ___________________________________ At equilibrium, the rate of evaporation (liquid to gas) equals the rate of condensation (gas to liquid). The amount of gas is the “vapor pressure” ___________________________________ Surface of liquid ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 44 What if you add a solute? ___________________________________ ___________________________________ At equilibrium, the rate of evaporation still must equal the rate of condensation. But at any given temperature, the # of solvent molecules at the surface is decreased and, therefore, so is the vapor pressure Surface of liquid ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 45 Vapor Pressure of Solutions the vapor pressure of a solvent above a solution is lower than the vapor pressure of the pure solvent the solute particles replace some of the solvent molecules at the surface Eventually, reAddition of aequilibrium nonvolatileissolute The pure solvent establishes an established, smaller number reduces thebut ratea of vaporization, liquidmolecules vapor equilibrium ofdecreasing vapor – therefore the the amount of vapor vapor pressure will be lower ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 46 ___________________________________ Thirsty Solutions a concentrated solution will draw solvent molecules toward it due to the natural drive for materials in nature to mix similarly, a concentrated solution will draw pure solvent vapor into it due to this tendency to mix the result is reduction in vapor pressure ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 47 ___________________________________ Thirsty Solutions When equilibrium Beakers with equalis liquid levels the established, of pure liquid solvent level in and the solution a solution are place beaker is in higher a bellthan jar. Solvent the solution molecules level in the evaporate pure solvent from beaker each– onethirsty the and fillsolution the bell jar, establishing grabs and holds an solvent equilibrium vapor more effectively with the liquids in the beakers. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 48 Raoult’s Law the vapor pressure of a volatile solvent above a solution is equal to its mole fraction of its normal vapor pressure, P Psolvent in solution = csolvent∙P since the mole fraction is always less than 1, the vapor pressure of the solvent in solution will always be less than the vapor pressure of the pure solvent ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 49 Ex 12.5 – Calculate the vapor pressure of water in a solution prepared by mixing 99.5 g of C12H22O11 with 300.0 mL of H2O Given: Find: ___________________________________ 99.5 g C12H22O11, 300.0 mL H2O PH2O mol A mol C12H22O11 c mol Concept g C12H22O11 Plan: mL H2O P H2O g H2O P c P CH2O PH2O = 23.8 torr, 1 mol C12H22O11 = 342.30 g, 1 mol H2O = Relationshi 18.02 g ps: Solve: 99.5cg C12 H 22O11 116 mol 12 H H 22OO 11 .65Cmol 2 ___________________________________ total mol H2O 0.2907 mol 12 H 0C.98 222 8 O11 H 22O11 0.2907 mol342.30 C12 H g22C O12 11 16.65 mol H 2 O 1.00 g 1 mol H 2O 300.0 mL H 2O 16.65 mol H 2O PH 2O c H 2O 1 mL P H 2O18.02 0.g98 H228O23.8 torr PH 2O 23.4 torr ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 50 Boiling Point Elevation What is the “boiling point” of a liquid? It is the temperature at which the vapor pressure equals the atmospheric pressure. So… …if you decrease the vapor pressure, you must increase the boiling point – it will take a higher temperature to get enough gas molecules (vapor pressure) to equal the atmospheric pressure. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 51 ___________________________________ Boiling Pt. Elevation Freezing Pt. Depression Birds of a Feather: ΔTb = T boiling, solution ΔTf = T freezing, solution –T –T boiling, pure solvent ___________________________________ = Kb m freezing, pure solvent = - Kf m m = molality of the solution Kb = boiling constant Kf = cryoscopic constant ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 52 NOTE ABOUT THE SIGN CONVENTION ΔTb = T boiling, solution ΔTf = T freezing, solution –T –T boiling, pure solvent = Kb m freezing, pure solvent = - Kf m Δ = change Δ = final state – initial state Many texts do not put a minus sign before the cryscopic constant and reverse the definition of ΔTf instead. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 53 K is a SOLVENT property ___________________________________ Colligative properties don’t care what the solute is – they only care how much solute there is. ___________________________________ The boiling point constant and cryoscopic constant are SOLVENT properties only. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 54 A simple problem How many grams of sucrose (C11H22O11) are needed to lower the freezing point of 100 g of water by 3 C? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 55 The Answer We want to decrease the freezing point by 3 C. ___________________________________ ___________________________________ ___________________________________ NOTE: Kf is the WATER cryoscopic constant ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 56 C11H22O11 - sucrose Or, my preference is to use concentration as a conversion factor: ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 57 Kf ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 58 Ex 12.8 – What is the freezing point of a 1.7 m aqueous ethylene glycol solution, C2H6O2? Given: Find: Concept Plan: ___________________________________ 1.7 m C2H6O2(aq) Tf, C m DT f m K f DTf DTf = m ∙Kf, Kf for H2O = 1.86 C/m, FPH2O = Relationships 0.00 C Solve:: DT m K FPH 2O FPsol'n DT f f f ,H 2O 1.7 m 1.86 C m DT f 3.2 C 0.00C FPsol' n 3.2C ___________________________________ ___________________________________ FPsol'n 3.2C Check: the unit is correct, the freezing point lower than the normal freezing point makes sense ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 59 Colligative Properties colligative properties are properties whose value depends only on the number of solute particles, and not on what they are Vapor Pressure Depression, Freezing Point Depression, Boiling Point Elevation, Osmotic Pressure the van’t Hoff factor, i, is the ratio of moles of solute particles to moles of formula units dissolved measured van’t Hoff factors are often lower than you might expect due to ion pairing in solution ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 60 Ionic compounds dissociate… …but not always completely. Ions of opposite charge are always a little “sticky”. So depending on just how sticky, an ionic compound may not completely dissociate. The degree of dissociation is given by the “van’t Hoff factor” – abbreviated “i” ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 61 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 62 A few van’t Hoff factors Solute i Measured FeCl3 3.4 K2SO4 2.6 MgCl2 2.7 ___________________________________ ___________________________________ ___________________________________ Notice that FeCl3 would seem to want to dissociate into FOUR (4) pieces: 1 Fe3+ and 3 Cl-. The van’t Hoff factor is less than 4: 3.4. This is because the ions are a little sticky. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 63 An ionic compound in water ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 64 Boiling Point Elevation What is the “boiling point” of a liquid? It is the temperature at which the vapor pressure equals the atmospheric pressure. So… …if you decrease the vapor pressure, you must increase the boiling point – it will take a higher temperature to get enough gas molecules (vapor pressure) to equal the atmospheric pressure. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 65 What is the Microscopic View of Freezing Point Depression? These phase change properties arise from the attractive interactions between all molecules (Van der Waal’s forces). When you make a solution, you break some of the solvent-solvent interactions and replace them with solvent-solute interactions. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 66 Freezing is a dynamic equilibrium between melting and freezing. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 67 Slight Variation on the problem How many grams of NaCl are needed to lower the freezing point of 100 g of water by 3 C? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 68 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 69 The Answer We want to decrease the freezing point by 3 C. ___________________________________ ___________________________________ ___________________________________ NOTE: Kf is the WATER cryoscopic constant ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 70 NaCl ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 71 It’s all about the # of particles NaCl is an electrolyte: NaCl →Na+ + Cl- ___________________________________ ___________________________________ You get 2 moles of solute per mole NaCl (well, 1.9 because of ion pairing) ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 72 ___________________________________ Osmotic Pressure Osmotic pressure is the “funky” colligative property, but it is very important biologically Osmotic pressure is the pressure required to overcome the natural pressure exerted by a solution by virtue of having a concentration. Osmotic pressure looks just like the ideal gas law: ___________________________________ ___________________________________ ΠV = nRT where Π is osmotic pressure Π= (n/V) RT = M RT ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 73 ___________________________________ Why is it important? Consider two solutions separated by a semipermeable membrane (meaning water can pass through but nothing else) at room temperature (298 K). On one side of the membrane is a 1 M NaCl solution. On the other side is a 4 M NaCl solution. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 74 ___________________________________ What Happens? ___________________________________ 1 M NaCl 4 M NaCl ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 75 ___________________________________ The water moves from the 1 M side to the 4 M side. Why? 1 M NaCl 4 M NaCl ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 76 ___________________________________ OSMOTIC PRESSURE ___________________________________ Π= iM RT On the 1 M side, the pressure is: Π= M RT = (1.9) 1 M (0.0821 Latm/mol K)(298 K) Π=48 atm On the 4 M side, the pressure is: Π= iM RT =(1.9) 4 M (0.0821 Latm/mol K) (298 K) Π= 190 atm ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 77 ___________________________________ Both solutions “push” on the membrane The bigger push wins! 48 atm 1 M NaCl 142 atm 4 M NaCl ___________________________________ ___________________________________ 190 atm Note the direction of the arrows. Osmotic pressure is pushing AGAINST the solution. ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 78 It’s all about sweating! What happens when you sweat? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 79 It’s all about sweating! What happens when you sweat? Your body loses water and some dissolved salts through your skin which cools your body. ___________________________________ ___________________________________ ___________________________________ What is the price you pay for this? ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 80 The cost of sweating Your cells have lost precious water and salts. ___________________________________ ___________________________________ What do you do about it? Drink water? ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 81 ___________________________________ The problem with water Your cells are slightly dehydrated from sweating. The salt concentration is actually higher than it should be. Water has no salt concentration. It flows into the cells rapidly (osmotic pressure) and fills the cells. But the cells are now diluted. Further, since the pure water will always have lower osmotic pressure and flow into the cell until either you run out of water or the cell bursts. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 82 Gatorade – Man’s answer to Osmotic Pressure Gatorade is flavored sweat! ___________________________________ ___________________________________ By adding salts, it matches its osmotic pressure to what the cell should be. This allows for smooth rehydrating of the cell without dilution or lysing. ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 83 ___________________________________ ___________________________________ ___________________________________ ___________________________________ continued… ___________________________________ ___________________________________ ___________________________________ Slide 84 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 85 ___________________________________ ___________________________________ ___________________________________ ___________________________________ continued… ___________________________________ ___________________________________ ___________________________________ Slide 86 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 87 ___________________________________ ___________________________________ ___________________________________ ___________________________________ continued… ___________________________________ ___________________________________ ___________________________________ Slide 88 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 89 ___________________________________ ___________________________________ ___________________________________ ___________________________________ continued… ___________________________________ ___________________________________ ___________________________________ Slide 90 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ Slide 91 ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________
© Copyright 2025 Paperzz