2014-03-31-calculus Sergey Mozgovoy 01 April 2014 Contents 1 Some integrals 1 2 Differential equations 4 3 Applications of integrals 5 1 Some integrals • Integral R2 0 x2 ex dx x = var ( ’x ’) A = integral ( x ^2* e ^x ,x ,0 ,2) ; A 2*e^2 - 2 A . n () # numerical value of A 12.7781121978613 plot ( x ^2* e ^x ,x ,0 ,2 , fill = true , figsize =4) # graph of the same curve 1 • Integral R 1 x2 −3x+2 dx integral (1/( x ^2 -3* x +2) ,x ) -log(x - 1) + log(x - 2) • Integral R 1 1+cos x dx integral (1/(1+ cos ( x ) ) ,x ) sin(x)/(cos(x) + 1) # A different method of integration can give the answer tan ( x /2) . Let us \ see that the graphs are the same : plot ( tan ( x /2) ,(x ,0 ,3) , figsize =4) ; 2 plot ( sin ( x ) /( cos ( x ) +1) ,(x ,0 ,3) , figsize =4) 3 2 Differential equations • Solve the initial value problem y 0 = 2x+1 2y−2 , y(0) = −1. x = var ( ’x ’) y = function ( ’y ’ ,x ) desolve ( diff (y , x ) ==(2* x +1) /(2* y -2) ,y ,[0 , -1]) y(x)^2 - 2*y(x) == x^2 + x + 3 solve ( y ^2 -2* y == x ^2+ x +3 , y ) # express y in terms of x ; condition y (0) = -1 \ implies that only the first solution fits [y(x) == -sqrt(x^2 + x + 4) + 1, y(x) == sqrt(x^2 + x + 4) + 1] • Solve the differential equation y 0 − y = x with an initial value condition y(0) = 2 x = var ( ’x ’) y = function ( ’y ’ ,x ) desolve ( diff (y , x ) -y == x ,y ,[0 ,2]) 4 -x + 3*e^x - 1 • Apply Eulers method with increment ∆ = 0.1 to approximate y(0.4) for the initial value problem y 0 = x + y + 1, y(0) = 1 x , y = var ( ’x , y ’) f (x , y ) = x + y +1 x =0; y =1; de =0.1 for i in range (5) : print (i ,x , y ) y = y + f (x , y ) * de ; (0, 0, 1) (1, 0.100000000000000, (2, 0.200000000000000, (3, 0.300000000000000, (4, 0.400000000000000, x = x + de 1.20000000000000) 1.43000000000000) 1.69300000000000) 1.99230000000000) This implies that y(0.4) ≈ 1.9923 3 Applications of integrals • Find the volume of the solid of revolution generated by the region bounded by y = 2x − x2 and y = 0 x , y = var ( ’x , y ’) ; f ( x ) =2* x - x ^2 solve ([ y == f ( x ) ,y ==0] , x , y ) # find the points of intersection [[x == 2, y == 0], [x == 0, y == 0]] The graph of f (x): plot ( f ( x ) ,x , -1 ,3 , figsize =4) 5 V = pi * integral ( f ( x ) ^2 ,x ,0 ,2) ; V # the volume 16/15*pi • Find the length of the curve y = x3/2 + 1 with x ∈ [0, 1] f ( x ) = x ^(3/2) +1 L = integral ( sqrt (1+ diff (f , x ) ^2) ,x ,0 ,1) ; L # arc length 13/27*sqrt(13) - 8/27 L . n () # numerical value 1.43970987337155 6
© Copyright 2026 Paperzz