Math 202 Assignment 5: The Fundamental Theorem of Calculus The due date for this assignment is .................. Reading assignment: Section 5:3 .................................................................................................................................................. 1. Use Part 1 of the Fundamental Theorem of Calculus to Önd the derivative of the function Z ex (a) h (x) = ln (t) dt 1 Z 1 u3 (b) y = du 2 1!3x 1 + u 2. Evaluate the integral. Z 2 (a) (1 + 2y)2 dy 1 Z 1 (b) (xe + ex ) dx 0 Z 1 (c) eu+1 du Z!1& (d) f (x) dx where 0 f (x) = & sin x cos x if 0 & x < .n2 if .n2 & x & . 3. What is wrong with the equation? Z 1 x!3 1 3 ! x!4 dx = ]!2 = " "3 8 !2 4. Find the derivative of the function Z sin x ! y= ln (1 + 2v) dv cos x 5 Math 202 Assignment 6: IndeÖnite Integrals and The Net Change The due date for this assignment is .................. Reading assignment: Section 5:4 .................................................................................................................................................. 1. Find the general indeÖnite integral. Z (a) (1 + tan2 4) d4 2. Evaluate the integral. (a) Z 1 (x10 + 10x ) dx 0 (b) (c) Z 0 p Z 0 (d) (e) &n4 Z Z 1 + cos2 5 d5 cos2 5 3n2 p p 1n 3 2 0 2 !1 dr 1 " r2 t "1 dt t4 " 1 j x " 2 j x j j dx 6 Math 202 Assignment 7: The Substitution Rule The due date for this assignment is .................. Reading assignment: Section 5:5 .................................................................................................................................................. 1. Evaluate the indeÖnite integral. Z (a) 5t sin (5t ) dt Z cos 5 (b) d5 sin2 5 Z sin 2x (c) dx 1 + cos2 x Z sin x (d) dx 1 + cos2 x Z dx p (e) 1 " x2 sin!1 x Z x (f) dx 1 + x4 Z 1+x (g) dx 1 + x2 2. Evaluate the deÖnite integral. (a) Z &n4 (x3 + x4 tan x) dx !&n4 (b) (c) Z Z 2 1 1 0 p x x " 1 dx dx p 4 (1 + x) 7 Math 202 Assignment 8: Integration by Parts The due date for this assignment is .................. Reading assignment: Section 7:1 .................................................................................................................................................. 1. Evaluate the integral. Z (a) (x2 + 2x) cos x dx Z p (b) ln ( 3 x) dx Z (c) x 2x dx (d) (e) (f) (g) Z Z Z0 Z x e2x dx (1 + 2x)2 1 y dy e2y cos x ln (sin x) dx 2 x4 (ln x)2 dx 1 2. First make a substitution and then use intgration by parts to evaluate the integral. Z p (a) cos x dx (b) (c) Z Z p p & &n2 ' ( 53 cos 52 d5 x ln (1 + x) dx 8 Math 202 Assignment 9: Trigonometric Integrals The due date for this assignment is .................. Reading assignment: Section 7:2 .................................................................................................................................................. 1. Evaluate the integral. Z & (a) cos4 (2x) dx 0 (b) (c) (d) (e) (f) (g) (h) (i) (j) Z &n2 sin2 x cos2 x dx Z0 t sin2 t dt Z cos2 x tan3 x dx Z Z cos5 x p dx sin x tan5 x dx Z x sec x tan x dx Z &n2 cot5 7 csc3 7 d7 &n4 Z csc x dx Z &n6 p 1 + cos 2x dx 0 (k) Z x tan2 x dx 9 Math 202 Assignment 10: Trigonometric Substitution The due date for this assignment is .................. Reading assignment: Section 7:3 .................................................................................................................................................. 1. Evaluate the integral. Z p 2 x "9 (a) dx x3 Z p 1 + x2 (b) dx x Z 0:6 x2 p (c) dx 9 " 25x2 0 Z x p (d) dx x2 + x + 1 Z p (e) x2 + 2x dx Z p (f) x 1 " x4 dx 10 Math 202 Assignment 11: Integration of Rational Function by Partial Fractions The due date for this assignment is .................. Reading assignment: Section 7:4 .................................................................................................................................................. 1. Evaluate the integral. Z 4x (a) dx 3 2 x +x +x+1 Z 3 x + x2 + 2x + 1 (b) dx (x2 + 1) (x2 + 2) Z x+4 (c) dx 2 x + 2x + 5 Z 1 (d) dx x3 " 1 2. Make a substitution to express the integrand as a rational function and then evaluate the integral. Z p x+1 (a) dx x Z dx p (b) 2 x +x x Z x3 p (c) dx 3 2+1 x Z p 1 p p (d) dx [Hint: Substitute u = 6 x] 3 x" x Z e2x (e) dx e2x + 3ex + 2 Z sec2 x (f) dx tan2 x + 3 tan x + 2 Z dx (g) 1 + ex 11
© Copyright 2026 Paperzz