Log Properties

LOG PROPERITIES
(a, b, M , N ο€Ύ 0, b, B ο‚Ή 1)
CONCEPTS
𝒃𝒙 = 𝒂

π₯𝐨𝐠 𝒃 𝒂 = 𝒙
EXAMPLES
π₯𝐨𝐠 𝒃 𝑴𝑡 = π₯𝐨𝐠 𝒃 𝑴 + π₯𝐨𝐠 𝒃 𝑡
𝑴
π₯𝐨𝐠 𝒃 = π₯𝐨𝐠 𝒃 𝑴 βˆ’ π₯𝐨𝐠 𝒃 𝑡
𝑡
π₯𝐨𝐠 πŸ‘ πŸ— = 𝟐
log 4 x ο€½ log 4  log x
2
2
2
x2
) ο€½ log x 2 ο€­ log y
10 y
10
10
log (
log 25x ο€½ x log 25
π₯𝐨𝐠 𝒃 𝑴𝑡 = 𝑡 π₯𝐨𝐠 𝒃 𝑴
logb M ο€½
πŸ‘πŸ = πŸ—

5
log B M
log B b
5
log 5 ο€½
3
log e 5 ln 5
ο€½
log e 3 ln 3
Note:
log 2 x ο€½ x
log bk ο€½ k
2
b
b0 ο€½ 1
οƒž
log1 ο€½ ln1 ο€½ 0
log 1 ο€½ 0
b
log x means log
10
log 5 ο€½ log10 5
x
ln 3 ο€½ loge 3
ln x means log e x
Also Note:
You CANNOT take the log of a negative number…
log
10
 ο€­7  ο€½ undefined
log  M ο‚± N  ο‚Ή log M ο‚± log N
β€œlog” is NOT distributive…
log MN ο‚Ή  log M  log N 
log 
N
M
Learning Center (CC-315)
οƒΆ ο‚Ή log M
οƒ·
οƒΈ log N