Geometry CP: Chapter 4 Review Guide Biller 1. We can classify triangles two ways: by Classifications by SC C\e-S std,. -S i. All 3 sides congruent: C and an(51-e_S . U (soscel.es cce,\Arvt__. ii. At least 2 sides congruen : i. No congruent sides: Classifications by ii. I. 05 Three congruent glen iii. One angle greater than 90: iv. One angle exactly 90: v. All three angles less than 90: C- 2. Classify each triangle. colohAt. 5C1A.1212-4,- \SC_ \5056e CtA- .1)„, 3. 4. f • x= 5. Equilateral with 48. 2x-5 and BC = 3x-9. Find x and the side length. Li 1 4x LiV r-4/I n 4 1;. 9— 159)scei es acv e Classify the triangle with A(5, 4) B(3, -1) and C(7, -1). S‘t\e S ekre. - 6. Every triangle has VRedegrees. Explain how we know this. 7.Finci the valuo .i cf etch angle in each figure. a. 35 ° Ito k )tS 8.Write a congruency statement for the triangles below. F t-1 C'"4 LE 9. What does CPCTC stand for? Conre-Sponc\ Cvo- 11 ED 46(403 \S- LFED \ SAS RtA4C vue".4 egArNpA.e04 +114,003ta 10. A QRS'i:AGHJ, R =12, QR=10, QS=6 and HJ=2x-5. Draw & label the triangles, then solve for x. A O 2 1.-‘) c Q JKL='LaDEF and m<J=36° m<E=64° and m<F=(3x+13) ° . Draw & label the triangles. and sQ lve for x. 3-1-13='6b $)413 S\9 D 12. Congruent triangles are -Tine. same. sze arI6Slr ct fie. 411 sides C.Offe590Pdt IA) 14-VoN St& 13. The 5 shortcuts to prove triangles = are Sql5 , 5 Ar s , Pt r5 , AS Pt 14. TWO ways we cannot prove triangles congruent are 4 -A 4 ar365 141. . & SSA Solve the following proofs: Proof #2: Proof #1: Given: Abirez, A543t Given: C is midpoint of Al, Aalla Prove: LA' Prove: LABD=ACDB SWer,"4 AITS IrotOn C5C WI> SC. 2) t R ECD "6. i■■ (niVV1 C, 15 me-94 AE 066" 14 vb// DE B 2 VeY 45 e.eP lexive DB D ) rArckpii4 RI+ drvicrior45 G)3) Ac* ce *5) Dpi n LS 4))A amt...•oy-LS k(14 1•-.E IA) SA6 ASVS6GD Proof #3: 5 ASA roo*LEcD Given: QS bisects <RST, <11=1<T Given: BD is a perpendicular bisector of AC Prove: QR 4:51- Prove: <A := <C 54AitlYei* UTD is .110t5e.c-ivrA 2)De-c DC < g) Av‘"' spa, it o 415DC r*.4 ) 1-SOAA'1.. D b'eeci-Or 3)Deb Oc D2c o 4) r4- 45 4t6DC, 6) SD `A-13D to) Alb DY-.Yy leC-1e) b)sArs OCT-C. 15. Place isosceles LiKl. with a base length of 8a on the coordinate plane. 16. Place a right isoscelesL\ ABC with leg lengths of 2a on the coordinate plane. of are V-1
© Copyright 2026 Paperzz