vue".4

Geometry CP: Chapter 4 Review Guide
Biller
1. We can classify triangles two ways: by
Classifications by
SC
C\e-S
std,. -S
i. All 3 sides congruent: C
and
an(51-e_S
.
U
(soscel.es
cce,\Arvt__.
ii. At least 2 sides congruen :
i.
No congruent sides:
Classifications by
ii.
I. 05
Three congruent glen
iii. One angle greater than 90:
iv.
One angle exactly 90:
v.
All three angles less than 90:
C-
2. Classify each triangle.
colohAt.
5C1A.1212-4,- \SC_
\5056e
CtA-
.1)„,
3.
4. f
•
x=
5. Equilateral with
48. 2x-5 and BC = 3x-9. Find x and the side length.
Li 1
4x
LiV r-4/I
n 4 1;.
9—
159)scei es
acv e
Classify the triangle with A(5, 4) B(3, -1) and C(7, -1).
S‘t\e S ekre.
-
6. Every triangle has VRedegrees. Explain how we know this.
7.Finci the valuo .i cf etch angle in each figure.
a.
35 °
Ito
k )tS
8.Write a congruency statement for the triangles below.
F
t-1
C'"4
LE
9. What does CPCTC stand for?
Conre-Sponc\
Cvo-
11
ED
46(403 \S- LFED \ SAS
RtA4C
vue".4
egArNpA.e04 +114,003ta
10. A QRS'i:AGHJ, R =12, QR=10, QS=6 and HJ=2x-5. Draw & label the triangles, then solve for x.
A
O
2 1.-‘)
c
Q
JKL='LaDEF and m<J=36° m<E=64° and m<F=(3x+13) ° . Draw & label the triangles. and sQ lve for x.
3-1-13='6b
$)413
S\9
D
12. Congruent triangles are -Tine.
same. sze arI6Slr ct fie. 411 sides
C.Offe590Pdt IA) 14-VoN
St&
13. The 5 shortcuts to prove triangles = are Sql5 , 5 Ar s , Pt r5 , AS Pt
14. TWO ways we cannot prove triangles congruent are
4 -A
4 ar365
141.
.
& SSA
Solve the following proofs:
Proof #2:
Proof #1:
Given:
Abirez, A543t
Given: C is midpoint of Al, Aalla
Prove: LA'
Prove: LABD=ACDB
SWer,"4 AITS
IrotOn C5C
WI> SC.
2) t
R ECD
"6.
i■■
(niVV1
C, 15 me-94 AE 066"
14 vb// DE
B
2 VeY 45
e.eP lexive
DB
D
)
rArckpii4
RI+ drvicrior45 G)3) Ac* ce *5) Dpi
n LS
4))A amt...•oy-LS
k(14 1•-.E
IA) SA6
ASVS6GD
Proof #3:
5 ASA
roo*LEcD
Given: QS bisects <RST, <11=1<T
Given: BD is a perpendicular bisector of AC
Prove: QR 4:51-
Prove: <A := <C
54AitlYei*
UTD is .110t5e.c-ivrA
2)De-c DC <
g) Av‘"'
spa, it
o
415DC
r*.4
) 1-SOAA'1..
D
b'eeci-Or
3)Deb Oc
D2c o
4)
r4- 45
4t6DC,
6) SD `A-13D
to) Alb DY-.Yy
leC-1e)
b)sArs
OCT-C.
15. Place isosceles LiKl. with a base length of 8a on the coordinate plane.
16. Place a right isoscelesL\ ABC with leg lengths of 2a on the coordinate plane.
of
are V-1