Leibniz’ Rule d Z v(x) dv du Z v(x) ∂f (x, t) f (x, t)dt = f (x, v(x)) − f (x, u(x)) + dt dx u(x) dx dx ∂x u(x) 1 d Z 2/x sin xt dt dx t=1/x t = Z 2/x 2 1 sin 2 sin 1 ·− 2 − ·− 2 + cos xt dt 2/x x 1/x x t=1/x =− sin xt sin 2 sin 1 + + x x x 2/x t=1/x sin 2 sin 1 sin 2 sin 1 =− + + − =0 x x x x 2 s= Z v u 1 − e−t dt t ∂s 1 − ev l0 H −ev = → −1 ∂v v → 1 ∂s 1 − eu l0 H +eu =− → +1 ∂u u → 1 3 Evaluate the integral F (α) = Z 1 0 xα − 1 dx (α ≥ 0) ln x by differentiating under the integral sign Differentiate both sides with respect to α: F 0 (α) = Z 1 0 = Z 1 0 ∂ xα − 1 ∂α ln x dx Z 1 1 α xα+1 x ln x dx = xα dx = ln x α+1 0 " #1 = 0 1 1+α Integrating now with respect to α we obtain F (α) = ln(1 + α) + C. Since F (0) = 0, C = 0 ⇒ F (α) = ln(1 + α) 4 Evaluate the integral F (α) = Z ∞ e−x · 0 Differentiate both sides with respect to α: 5 sin αx dx x Using R ∞ −x2 e 0 √ = π , 2 show that I = R ∞ −x2 e 0 √ cos αx dx = π −α2 /4 e 2 Differentiate both sides with respect to α: Z ∞ dI 2 = e−x · (−x sin αx) dx dα 0 2 Integrate “by parts” with u = sin αx, dv = −xe−x dx ⇒ du = α cos αx dx, v = 2 −e−x /2: ∞ 1 1 Z ∞ −x2 2 = − e−x sin αx + e α cos αx dx 2 2 0 0 The first term approaches zero at both limits and the integral is the original integral I multiplied by α: α dI = I dα 2 We might recognize this differential equation in the form ln y =√14 x2 + C ⇒ y = Cex C = π/2 so: 2 /4 . Thus I = Ce Z ∞ −α2 4 e cos αx dx = 0 6 = xy 2 ⇒ dy y − 21 x dx ⇒ and at α = 0 the given value yields √ −x2 dy dx π −α2 /4 e 2
© Copyright 2026 Paperzz