FEMS Microbiology Letters 122 (1994) 203-210 © 1994 Federation of European Microbiological Societies 0378-1097/94/$07.00 Published by Elsevier 203 FEMSLE 06190 MiniReview Membrane-bound Bacillus cytochromes c and their phylogenetic position among bacterial Class I cytochromes c Nobuhito Sone * and Hiroyuki Toh Department of Biochemical Engineering and Science, Kyushu Institute of Technology, 680 Kawazu, lizuka, Fukuoka-ken 820, Japan (Received 5 May 1994; revision received 21 July 1994; accepted 3 August 1994) Abstract: Gram-positive bacteria lack a periplasmic compartment and contain only membrane-bound cytochromes c. There are at least two types. One is found in subunit II of cytochrome oxidase, and the other is small cytochrome c which is also membrane-bound because of an unprocessed signal sequence or post-translational acylation at the N-terminal end of the protein. These Bacillus cytochromes c are compared with known class I cytochromes c, and a phylogenetic tree has been constructed by the neighbour-joining method. Key words: C~tochrome c; Bacterial respiration; Bacillus; Dendrogram Introduction L i t t l e is k n o w n a b o u t c - t y p e c y t o c h r o m e s of G r a m - p o s i t i v e b a c t e r i a r e l a t i v e to t h o s e o f G r a m - n e g a t i v e b a c t e r i a . This is p a r t l y b e c a u s e in Gram-positive bacteria c-type cytochromes are m e m b r a n e - b o u n d a n d t h u s m o r e difficult to purify t h a n t h e i r s o l u b l e c o u n t e r p a r t s in G r a m n e g a t i v e b a c t e r i a . R e c e n t studies have r e v e a l e d t h e p r e s e n c e a n d c h a r a c t e r i s t i c s of several c - t y p e c y t o c h r o m e s in G r a m - p o s i t i v e b a c t e r i a , especially in the g e n u s Bacillus ( i l l u s t r a t e d s c h e m a t i c a l l y in Fig. 1). In this review we will d e s c r i b e s t r u c t u r a l * Corresponding author. Fax: (+ 81-948) 29 7801. SSDI0378-1097(94)00342-4 c h a r a c t e r i s t i c s of Bacillus c y t o c h r o m e s c a n d c o m p a r e t h e m with o t h e r b a c t e r i a l Class 1 cyt o c h r o m e s c, which a r e small, m o n o - h e m e cyt o c h r o m e s with the h e m e C covalently b o u n d close to the N - t e r m i n u s [1]. Bacillus cytochrome c fused with cytochrome oxidase O n e Class I c y t o c h r o m e c is p r e s e n t in the c y t o c h r o m e caa 3 oxidase of Bacillus species. T h e t h e r m o p h i l i c b a c t e r i u m PS3, a strict a e r o b e isol a t e d from a hot s p r i n g in J a p a n a n d similar to B. stearothermophilus, has a r e s p i r a t o r y c h a i n composed of primary dehydrogenases, menaquinone- 204 7, c y t o c h r o m e bc x complex and cytochrome c oxidase at least w h e n the ceils are cultured u n d e r highly-aerobic conditions [2,3]. T h e c y t o c h r o m e c oxidase is c o m p o s e d of four subunits [4] and has four redox centres called c y t o c h r o m e a, cytochrom e a 3, Cu A and Cu~ [3,5]. A characteristic feature of this oxidase is the presence of covalently b o u n d h e m e C, which is b o u n d to subunit II together with the Cu A centre [5,6]. W e class this kind of c y t o c h r o m e c as IIc. Cloning and sequencing of the caa (or cta) o p e r o n encoding the oxidase subunits have shown that the heine of this cytochrome c is b o u n d at the distal end of subunit II [7]. T h e c y t o c h r o m e c d o m a i n is composed of about 9 0 - 1 0 0 residues. T h e overall sequence of this bacterial cytochrome c is dissimilar to mitochondrial c y t o c h r o m e c, but it is still lysine-rich and several residues are conserved. This I l c seems to be analogous to the mitochondrial c y t o c h r o m e c b o u n d at the high-affinity site of c y t o c h r o m e c oxidase [6], since the super complex of the bc 1 complex and cytochrome caa3-type oxidase oxidized quinol at an appreciable rate and without exogenous c y t o c h r o m e c [8,9]. Similar cytochromes caa 3 have also b e e n f o u n d in other Bacillus species such as B. subtilis [10,11], B. firmus O F 4 [12], B. stearothermophilus [13] and B. cereus [14]. A Small cytochrome c in Bacillus A gel electrophoresis pattern of m e m b r a n e s of Bacillus PS3 in the presence of sodium dodecyl- sulfate is shown in Fig. 2. Four or five components are seen after heme-staining for cytoc h r o m e c. T h e 38-, 28- and 22-kDa c o m p o n e n t s are the subunit II of cytochrome caa 3, the cyt o c h r o m e c 1 ( f ) and the c y t o c h r o m e b subunit of the bcl(bf ) complex, respectively [5,8,9]. T h e smallest c o m p o n e n t , about 10 kDa, corresponds to a cytochrome c-551 [15]. T h e a m o u n t of this small cytochrome c was m o r e a b u n d a n t in the m e m b r a n e s of the cells cultured u n d e r air-limited conditions (Lane 2). T h e similar cytochrome c (c-550) is also f o u n d in B. subtilis m e m b r a n e and was also induced by air-limitation as reported by V o n W a c h e n f e l d t and H e d e r s t e d t [16,17]. A similar pattern of m e m b r a n e - b o u n d cytochromes c is also observed in B. subtilis m e m b r a n e s [17]. T h e gene (cccA) coding for the B. subtilis 13-kDa c y t o c h r o m e c-550 (121 amino acids) has been cloned. Analysis of the m a t u r e protein has shown that its signal peptide is not processed and functions to a n c h o r the cytochrome to the m e m b r a n e [16]. T h e small cytochrome c of Bacillus PS3 m e m b r a n e s can be extracted with a mild surfactant such as cholate. It has been purified and B 300H . . . C COOH ...~_OOH . - - - - ~ , r t, NH 2 _ _ _ NH2 - . . . . . ~H2 Fig. 1. Schematic representations of the three types of membrane-bound Bacillus small cytochromes c. (A) Cytochrome caa3 where cytochrome c is a part of subunit II of cytochrome oxidase as a result of gene fusion. The chromophores of cytochrome c oxidase such as Cu A in subunit II, and Cu B, a, and a 3 in subunit I, as well as c, heme C of cytochrome c moiety, are shown. (B) Bacillus subtilis c-550 with the signal sequence as a membrane anchor. (C) The signal peptide of Bacillus PS3 c-551 which is processed, and diacyl glycerol residues locate the protein in the membrane. 205 A Mr B coxl coxll C1 b C-551 Fig. 2. SDS gel electrophoresis of membrane fraction of thermophilic Bacillus PS3, showing polypeptides containing heme. A, membranes from vigorously aerated cells; B, membranes from air-limited cells. Mr, the Bio-Rad pre-stained marker-proteins (106, 75, 49, 32, 27, 17 kDa. Coxl and coxlI are the largest and second largest subunits of cytochrome c oxidase, while c~ and b are the cytochrome subunits of cytochrome bct(bf) complex. named PS3 c-551 [15]. The structural gene for this cytochrome has been cloned and sequenced [18]. Lipase treatment, reverse-phase chromatography, protein sequencing, and ion-spray mass spectroscopy have revealed that the mature cytochrome c-551 has a diacylglycerol attached via a thioether bridge at the N-terminal cysteine (the 19th amino acid residue of the nascent peptide) [I8]. Lipoproteins such as the cytochrome c subunit of the Rhodobacter L,iridis reaction centre and the Escherichia coli major outer membrane protein are known to have the N-terminal cysteine residue modified with diacylglycerol [19]. The N-terminal cysteines of these proteins are known to have amino groups, but the N-terminal cysteine of PS3 c-551 is blocked [18]. A plausible structure of PS3 c-551 as a lipoprotein is shown in Fig. 3. Thus, at least three methods are possible to make small Bacillus cytochromes c membrane-bound (see also Fig. 1). In addition to Bacillus PS3 and B. subtilis, the partial amino acid sequences of B. lichenformis and B. azotoformans cytochromes c have been reported [20]. These three sequences of small Bacillus cytochromes have been compared with those of Pseudomonas aeruginosa c-551 (c 8) and Anacystis nidulans c 6. The Bacillus sequences show common features with both c 6 and c8, but are at the same time clearly different from both types, indicating that they may form a new group of class I cytochromes c [18]. Several small 'soluble' Bacillus cytochromes c have been purified; c-551 and c-554 from B. subtilis [21], c-550 from thermophilic Bacillus PS3 [22], c-552 from alkaliphilic B. firmus RAB [23], and c-551, c-552 and c-554 from B. licheniformis [24]. These cytochromes are probably derived from membrane-bound forms by proteolysis. Soluble fractions of Bacillus PS3 [15], B. subtilis [16] and alkaliphilic Bacillus YN-2000 [25] contain no cytochromes. C-type cytochromes generally function in the periplasm or the periplasmic surface of the inner membrane. In this respect it is noteworthy that Hreggvidsson solubilized c-552 and c-555 from membranes of B. azotoformans by the addition of trypsin [20]. The same thing also occurs with PS3 membranes (Sone, unpublished). The role of these small Bacillus cytochromes c has not been elucidated. Von Wachsenfeldt and CH20-CO-C•sH3• CHO-CO-CIsH31 CHacO- Nit- C 19. . . . . . . . . . . . . . . C-A-S-C-H ....... A_K_K 111COOil Fig. 3. A likely structure of PS3 cytochrome c-551 containing diaeyl glycerol [18]. 206 A I ......... + ......... + ......... + ......... + ......... + ......... + ......... + ......... + ......... + ......... + ........ I ) ~QLAKQKGCMACHDLKAK .... KVGP-AYADVAKKYA ................. -GRKDA---VD-YLAGKIKKGGSNGVW 2) GEALFKSKPCAACHSIDAK .... LVGP-AFKEVAAKYA ................. -GQDGA- 3 ) GEELFKSKPCGACHSVQAK .... LVGP-ALKDVAAKNA ................. -GVDGA---AD-VLAGHIKNGS-TGVW ...... -C~MP-PNP--VT--EEEAKTLAEWVLTL 4 ) PEVLFKNKGCVACHAIDTK .... MVGP-AYKDVAAKFA ................. -GQAGA---EA-ELAQRIKNGS-QGVW ...... -GPIPMP-PNA--VS--DDEAQTLAKWVLSQ - -AD-LLAGH ....... + ......... IKNGS -QGVW ....... GSVPMP-PQN--VT--DAEAKQLAQWILSI GP IPMP-PNP --VT--EEEAK I LAEWILSQ 5 ) GEELYKTKGCTVCHAIDSK .... LVGP-SFKEVTAKYA ................. -C-QAGI---AD-TLAAKIKAC-G-SGNW ...... -GQIPM~-PNP--VS--EAEAKTLAEWVLTH 6 ) AKALAQKSGCLACHSIDAK .... VLGP-AYKDVAAKYK ................. -GDKGA---EA-KLIEKVKKGG-SGVW ...... -GNIPMP-ANSPQVK--DEDIKTIVEWILTL ................. -GQAGA---PA-LMAERVRKGS-YGIF ...... -GYJ~PMT-PTPPARI-SDADLKLVIDWILKT 7 ) PAELATKAGCAVCHQPTAK----GLGP-SYQEIAKKYK 8) AEQ I F -KQNCASCHGQDLSG-- -GVGP -NLQKVGSKYS .......................... KD-E IKNI IAN ............. 9} GEE I Y -QQNC TGC HG~DLAG-- -GSAP - S LKEVGGKYK .......................... ES-E IKDIVVN .............. GRGGMP - - -GN-LV 10) PEE I Y -KANC IACBG~ -VSGP -S LKGVGDKXD .......................... VA-E IKTKIEK .............. GGNGMP - - - SG-LV -PADKLDDMAEWVSK 11) GEDIV-GKTCNTCHGTGL NYEG-- 12 ) A D D I I - A K H C N A C H C ~ K G V 13) 14) ..... LGAP-KVGI~KAF ..................... WGKRAE ..... LGAP-KIGDTAA ..................... WKERAD--HQGGLDGILAKAI-S ..................... ..................... WE PRM- - -AK -CAMDSLVQSVK-N ......... -GLNAMP W A P H I - - - A K - ~ S I-KGYKG ...... TKGMMP GEAVY-NKACQTCHAMGI ..... AGAP-ELNDAAA GKATY-DASCAMC BKTC44 ..... MGAP-KVGDY~AA - -EQGGLDGLLAKAI -GRGAMP -S ......... .... VV~A--AKTL-KKED- ................. LVKYG---KD-SVE-AIV-TQ-VTK ........ .... VV~P--AKTL-EKAD.... VVMA--NKTL-KKEA ................. .................. LDEYG---MA-SIE-AIT-TQ-VTN LEQFG---MN-SAD-AIM-YQ-V~N ....... ....... 18 ) GASVF-SANCAACH~ .... VIVA--NKTL-SKSDLAK 19 ) GEKVF-SANCAACHAGGNN .... AIMP--DKTL-KKDV ....... -G~NAMP-GFNGRLS--PLQIEDVAAYVVDQ LEANS---MN-TID-AIT-YQ-VQN ....... - G ~ - A F G .................. LTANG---KD-TVE-AIV-AQ-VTN ....... -G~GAMP-AFKGRLS--DDQIQSVALYVLDK ....... -(~(GPMP -AWE GVLS - -E DE IVAVTDYVYTQ .... VISA--GKVL-SKTAIE ............... .............. 23 ) GEQVF-TGNCAACBSVEEE .... KTLE--LSSL-WKAK FYLDGG-- -Y- -TKE -AIE -YQ-VRN -QYLDC-G---F--KVE-SSI-YQ-VEN ................. 24 ) GAKIY--AQCAGCBQQNGQ-----GIPG-AFPPL-AGHVAEI SYLANF---NG-DES-AIV-YQ-VTN .............. ........ ....... RLV--DEDIEDAANYVLSQ (~(GAMP-AWADRLS--EEEIQAVAEYVFKQ -GKNAMP-AFGGRLE--DDEIADVASYVLSK LAKEGG---RE-YLI-LVLLYG-LQGQIEVKGMKYNGVMS-SFAQ-LK--DEEIAAVLNHIATA 25 ) GED~I--GTCVACHGTDGQ----GLAP-IYPNLTGQSA ................. TYLESS---IKAYRDGQ-RKGG-NAA 26 ) GQAKA--AVCGACBG~DGN .... SAAP-NFPKLAGQGE ................. RYLLKQMQDIKAGTKPGAPEC-SGRKVL 27) - -- -GNTPAAYPRLSGQHA ................ -QYVAKQLTDFREGARTNDGD 28 ) GKTLY-DASCASCBG~QAQ----GMFP-KLAGLTSE 29 ) GESLF-ATSCSGCHG~LAEG---KLGP----GLNDNYWTY .................... ................. 30 ) AEELY-AGMCSGCBG~YAEG---KIGP----GLNVAYWTY ................. 31) GAALY--KSCVGCHC4%DGS .... KQAM-32 ) GEELFKEKNCLSCHAVEPND---K-RA-E Gt4GAMP-AFGGRLS--AEDIEAVANYVLAQ -G~GAMP-AFGAKLS--ADDIEGVASYALDQ -(~KNAMP-AFGGRLS--EAQIENVAAYVLDQ YLKGFD---DD-AVA-AVA-YQ-VTN .... SVMP--EKTL-DKAALE -PAC TGCHSPNGE -PGGMC~C S DDDYKAAIE FMAE K -AKGGNPKLTDAQVGNAVAYMVGQ .............. GADVF-ADNCSTCHVNGGN ........ ....... .............. 124TPMA----QGLS--DEDIADIAAYYSSQ EMTGML .... DNFS--DQDLADLAAYFTSQ t~4- I M R - S I A A K L S - -NKDIAAI SSY IQGL RIKTT---L--VAFKSGDTAT-LKKEG-LGGP-NSAIMA-PNAAGLS--EQDMDNLSAYIATL PSNT---TDVGLFATIF-GG........... ANGMMGPHI~N-LT--PDEMLQTIAWIRHL PGNE---TDVGLFSTLY-GG --GVGHAVKGQ ................ KADE LFKKI/( -GYADGSY .... AARTAPNL-A-TFGE-RTKV-AGVKEAN---KE-NV~PD-SIKP ............ ATGQMGPMWGS-LT--LDEMLRTMAWVRHL -GG-E .......... KKAVMT -NLVKRYS - - DEEMKAMADYMSK ...... -G-I~fGTYPK-LS--DSETNALYEYLKGL 33 ) G~AIF-NKSCIGcHAVTPLD---K-RP-A----QRRTAPNL-A-DFGD-RERI-AGILEHN---EE-NLKKWLRDPN-SVKP ...... -G-NKMA~GH-LT--EEQIDALTKYLMSL 34 ) GRQVFEENSCIGCHAVGGTGT--AA~-AF ............ ...... -G-NVMPA-YPD-MS--EEDMEALIAYLRSL 35 ) GQ~-QQNCAACBGVARSMPPAVIGP-EL . . . . . . . . . . . ...... -G-VKMPG-FPQ-LS--EEDLDALVRYLEGL T-NFGE-REVI-AGYLENN---DE-NLEAWIRDPQ-SLKQ -G-LWGN-RTSLGAGIVENT---PE-NLKAWIRDPA-C~ 36 ) GATLFKTR-CLQCHTVEKGGPH-KVGP-NLHGIFGRHSGQAEGYSYTDANIK---KNVLWD---EN-NMSEYLTNPK-KYIP 37) GKKTFVQK -CADCHTVENGGKH -KVGP -NLWGLFGRKTGQAEGYS YTDA~ - - -KGIVWN- ...... - -ND -TLME YLENPK 38 ) G~J%AF-NK-CKACHEIG~SAKN-KVGP-ELNGLDGRHSGAVEGYAYSPAt~J%---SGITWT---EA-EFKEYIKDPK-AKVP 39 ) APPAFGM--CKAC~SVEAG-KN-GVG~-SLAGVYGRKAGTLAGFK~SDPHAK---SGLTWD---EP-TLTKYLADPK-GVIP 40) GEKVSKK - -C LAC B TFDQGC.AN-KVGP O -NLFGVFE NTAAHKDNYAYSE S YTEMKAKGL~%~T- - -EA-NLAAYVKDPK -G-TKMA--FGG-LK-KEKDRNDLITYLKKA -Ky I p ...... -G-TKM I --FAG- IK -KKGERQDLVAYLKSA ...... -G-TKMV--FAG-IK-KDSELDNLWAYVSQF ...... -G-~J~V--FAG-LK-NPADVAAVIAYLKSL - A F V L E ~ D P ~ T - - ~ OO - - LT-~DE o Bac. B small C C8 "d'o"• .OfOe c. $ 05- C6 '~" 041 035 ~ |o 49 / 024 031 0 59 C4 31 0VUc.553 26AVIC4 ~ • ( 25/¢a/c4 - 10,5) 0 023 O24 q~¢~ 036 073 036 0 0 49 04 24 Tth 6"-552 28 30 75 30 043 03 035 35 ~ # 022 ~,~ "~ q,~. • 0 025 0 22 Tne c 4 Pde CL I KHMSGL .................. 22 ) GAQVF-NGNCAACHMGGRN LADGM- KAA K GINAMP-PKGTCADCSDDELREAIQKMSGL 16 ) GGQ~-SANCASCBLGGRN 17 ) GAKVF-SANCAACHMGGGN 21) - DE KEAEAVAKWLSE -GINAMP-PKGTCADCSDDE .......... 15 ) GASIF-SANCASCHMGG~N 20 ) GGKVF-NANCA~CHASGGG----QING--AKTL-KKNA - - -AG- I I -KGE DADKVAEWLAAK ,~6 0 25 33 PS3 IIc asrt*,,,c I O2 i IE ~ T L L 207 H e d e r s t e d t d e l e t e d t h e c c c A g e n e o f B. subtilis a n d f o u n d t h a t t h e m u t a n t cells grew as well as the w i l d - t y p e [16]. T h e B a c i l l u s PS3 c-551 m a y b e an e l e c t r o n d o n o r for an a l t e r n a t i v e o x i d a s e o t h e r t h a n the c y t o c h r o m e c a a 3 - t y p e oxidase. T h e c-551 is p r o d u c e d u n d e r a i r - l i m i t e d c u l t u r e c o n d i t i o n s w h e r e t h e a l t e r n a t i v e oxidase f u n c t i o n s [15], a n d c y t o c h r o m e c is n o t n e c e s s a r y for quinol o x i d a s e activity o f t h e s u p e r c o m p l e x c o m p o s e d o f t h e c y t o c h r o m e b c a a n d c y t o c h r o m e c a a 3 - t y p e oxid a s e [8]. B. a z o t o f o r m a n s is k n o w n to p r o d u c e c-552 a n d c-555 u n d e r b o t h a e r o b i c a n d denitrifying c o n d i t i o n s [20]. B. f i r m u s R A B c u l t u r e d at a l k a l i n e p H p r o d u c e s c-552 u n d e r b o t h highly a e r o b i c a n d a i r - l i m i t e d c o n d i t i o n s [23]. P e r h a p s the role of t h e s e small c y t o c h r o m e s c will b e clarified in t h e n e a r future. Phylogenetic analysis of Class I cytochrome c T h e two kinds o f B a c i l l u s c y t o c h r o m e s c, I I c a n d small B a c i l l u s c y t o c h r o m e s c a r e a l i g n e d with class I c y t o c h r o m e s c in Fig. 4A. T h e class I c y t o c h r o m e s c, relatively small m o n o h e m e cyt o c h r o m e s with h e m e C in t h e N - t e r m i n a l part, have b e e n s u b d i v i d e d into 1 A (long c2), 1B (middle c 2 a n d m i t o c h o n d r i a l c), 1C (split a - b a n d , c 6 a n d c a) 1D (c8), 1E ( % ) a n d o t h e r s [1,2]. D i c k e r - son has a l r e a d y shown a l i g n m e n t s b a s e d o n t h e t e r t i a r y s t r u c t u r e o f c y t o c h r o m e s c [26]. A n unrooted phylogenetic tree created by the n e i g h b o r - j o i n i n g m e t h o d [27] is shown in Fig. 4B. Class I c y t o c h r o m e s c i n c l u d i n g the two types o f B a c i l l u s c y t o c h r o m e s c a r e classified into five or six groups: (1) t h e c 2 a n d m i t o c h o n d r i a l cyt o c h r o m e c cluster, which also c o n t a i n s the B a c i l lus c y t o c h r o m e s c f o u n d in s u b u n i t II of t h e c y t o c h r o m e c o x i d a s e ( I I c ) ; (2) the c 6 cluster; (3) the s m a l l - s i z e d c y t o c h r o m e s c f r o m B a c i l l u s which show r e l a t i o n s h i p with c6; (4) t h e r a t h e r h o m o l o g o u s c 8 group; a n d (5) the fifth t y p e which is very h e t e r o g e n e o u s c o n t a i n i n g c 4 (plus c L) a n d c 5 groups. T h e l a t t e r g r o u p is k n o w n to c o n t a i n e x t r a C y s - r e s i d u e s f o r m i n g a short disulfide l o o p a n d m a y b e c o n s i d e r e d as a s u b - b r a n c h or t h e sixth g r o u p [1]. D e s u l f o v i b r i o c,ulgaris c-553 a n d Chlorobium lumicola (former thiosulfatephilum ) c-555 show w e a k similarity to this group, while T h e r m u s t h e r m o p h i l u s c-552 [28] is i n c l u d e d in the c 4 g r o u p with t h e f l a v o c y t o c h r o m e s [29]. T h e s e t h r e e c y t o c h r o m e s , which a r e k n o w n to b e omitt e d f r o m any subclass [2], a r e all in t h e c 4 plus c 5 cluster. C y t o c h r o m e s c L of P a r a c o c c u s d e n i t r i f i c a n s a n d M e t h y l o b a c t e r i u m e x t o r q u e n s A M 1 form a s u b - c l u s t e r s e p a r a t e d at a very early time. T h e p a t t e r n s in the t r e e a r e c o n s i s t e n t with A m b l e r ' s classification in g e n e r a l , e x c e p t t h a t he p l a c e s Fig. 4. (A) Alignment of class I cytochromes c and (B) a phylogenetic tree for Class I cytochrome c including those from Bacillus. (A) 1, Hydrogenobacter thermophilus c 8 (c-552)[c552-HYDTH]; 2, Pseudomonas stutzeri c8; 3, Pseudomonas mendocina Cs; 4, Pseudomonas aeruginosa Cs; 5, Azotobacter vinelandii Cs; 6, Methylophilus methylotrophus c 8 [1]; 7, Rhodopseudomonas gelatinosa c 8 [1]; 8, PS3 c-551 [18]; 9, Bacillus licheniformis c-552 [20]; 10, Bacillus subtilis c-550 [16]; 11, Ps. aeruginosa c 5 [1]; 12, Ps. mendocina Chll6 c 5 [30]; 13, Organism H-1-R c 5 [1]; 14, Chlorobium lumicola c-555; 15, Microcystis aeruginosa c 6 [CYC6-MICAE]; 16, Anacystis nidulans c6; 17, Synechococcus sp. 6312 c 6 [CYC6-SYNSP]; 18, Spirulina maxima %; 19, Porphyra tenera %; 20, Plectonema boryanum c 6 [CYC6-PLEBO]; 21, Euglena gracilis c6; 22, Chlamydomonas reinhardtii c 6 [CYC6-CHLRE]; 23, Monochrysis lutheri c6; 24, Thermus thermophilus c-552 [28]; 25, Halophilic Micrococcus c-554; 26, Azotobacter L'inelandff c 4 (N side) [29]; 27, A. L'inelandii c a (C side) [29]; 28, Thiobacillus neapolitanus c-554(548) [C554- THINE]; 29, Methylobacterium extorquens c k [CYCL-METEX]; 30, P. denitrificans c L [CYCL-PARDE]; 31, Desulfouibrio c'ulgaris Miyazaki c-553 [C553- DESVM]; 32, B. subtilis llc [10]; 33, Bacillus PS3 IIc [7]; 34, Bacillusfirmus Ilc [12]; 35, T. thermophilus IIc [34]; 36, Saccharomyces cereL,isiae c iso-1 [CYC1- YEAST]; 37, tuna c; 38, Nitrobacter winogradskii c 2 [C550- NITWI]; 39, Rhodospirillum fulvum c2, iso-1; 40, Rhodospirillum rubrum c 2. Extreme N-terminal and C-terminal parts are omitted from the alignment. The sequences without citation or accession number in the amino acid sequence data base Swiss Prot are obtained from Dickerson's alignment [26]. Since the high sequence divergence within the family prevented us from constructing a multiple alignment automatically, we used the alignment which Dickerson previously constructed following the tertiary structures of the enzymes [26] when available. The new sequences were added to the alignment after comparison using the Needleman-Wunsh method [35]. The positions of gaps were adjusted consistent with those of Dickerson' alignment. (B) The phylogenetic tree was constructed by the neighbour-joining method [27]. The genetic distance of each aligned pair was evaluated as the number of amino acid replacements per site with Poisson correction. A continuous gap in the alignment was treated as a single substitution. 208 both c 4 and c 6 which have a split a - b a n d in Class 1C [1]. Although both have the spectrally split a-band, c 4 is quite different from c 6. The small Bacillus cytochromes c are related to c 6 in the tree. This result is consistent with the analysis of 16S r R N A [32] which shows relatedness between cyanobacteria and Gram-positive bacteria. Also the structure of the Bacillus cytochrome bcl(bf ) complex is rather similar to that of the cyanobacterial enzyme [9]. The sequences of Bacillus small cytochrome c are, however, also similar to cs, as noted before [16,23]. It is thus likely that the small Bacillus cytochromes c may be a new group in Class I cytochromes c. However, only two full and two partial sequences are available to date. Although this phylogenetic tree is unrooted, and thus gives no definite information on the ancestral cytochrome, it is tempting to speculate that the differentiation of Class I cytochromes c into five (or six) subdivisions occurred at a very early stage in the cytochrome c history. Dayhoff has shown an evolutionary tree of Class Ic-type cytochromes, in which c 6 evolves from an ancestral cytochrome c of an anaerobe, and c 2 and c s from a primitive cytochrome c 6 (Fig. 4 in [31]). Since many present bacteria are known to have two to four kinds of Class I c-type cytochromes, it is likely that differentiation for their functional roles should be emphasized. Roles of Class I cytochrome c The functional roles of Class I cytochromes have not been well documented except those of c 2 and %, which provide electrons to h e m e / C u type oxidase as well as mediate electron transfer between the bcl(bf ) complex and the photosynthetic reaction centre or photosystem I. Table 1 summarizes the roles (sometimes though putative) of the respective group of Class l cytochromes c as well as their structural characteristics. Since the physiological electron donors and acceptors of each of the cytochromes c have been determined rarely, the Table is rather speculative. However, we hope that our suggestions may stimulate interest in determining their functions. It seems likely that cs, including c5, is the substrate for an alternative terminal reductase such as nitrite reductase. On the other hand, c 4 seems to be an electron acceptor from dehydrogenases which transfer electrons to the cytochrome corn- Table 1 Characteristics of the six subdivisions of Class I cytochromes c Phylogenic subclass Electron transfer group No. Name Donor Acceptor 2. I A + IB ( L c 2 X M c z) IIc IC (%) bc 1 bc 1 /~f b R C (PSI) cyt.ox (aa 3) cyt.ox (aa 3) PSI cyt.ox 3. IC (c 4) DH cyt.c 4. IE (c 5) As Cs? as cs? 5. ID (cs) ,7 Reductases 6. Bacillus small c bc i Alternative oxidase? Structural feature Fused with COIl Split a-band M--LS--I--Y ~o Split a-band, aromatic and P after heine site Extra C, no aromatic near C-terminus Several P after W near C-terminus With signal sequence Main presence Purple bacteria Bacillus Cyanobacteria, chloroplasts Nitrogen fixers, Denitrifiers Denitrifiers. purple bacteria Bacillus bRC, bacterial reaction centre; PS, photosystem; COII, subunit 2 of cytochrome oxidase; DH, dehydrogenases; IA-E, the name of subdivisions after Ambler [1]; M, medium; L, large. a This motif is conserved among this group, but occurs more or less frequently in Class 1 cytochromes c belonging to other groups as noted by Ambler [1]. 209 ponent of the main electron transfer system. We also propose that the thermophilic Bacillus cytochrome c-551 may function as substrate for an alternative terminal oxidase other than the h e m e / C u - t y p e oxidase [15]. In this respesct it is noteworthy that a terminal oxidase functioning in micro-aerobic soybean root nodules has a cytochrome with two C hemes, whose sequence is rather similar to c 6 [32]. Saraste and Castresana pointed out that this alternative oxidase may be related to a primordial oxidase, and that it is distant from other oxidases but still belongs to the cytochrome oxidase super-family [33]. 3 4 5 6 7 Conclusion Having no periplasmic space, Gram-positive bacteria contain m e m b r a n e - b o u n d Class I cytochromes c. One type of Bacillus cytochrome c is found in subunit II of the aa3-type cytochrome oxidase as a result of gene fusion. Another type, the small cytochrome c, is m e m b r a n e - b o u n d via a N-terminal hydrophobic polypeptide (signal sequence), or a diacyl glycerol moiety. The cytochrome c-moiety of the former type forms a sub-cluster of the c 2 group, while the latter shows a weak relationship to the c 6 group. The Class I cytochromes c are divided into at least the following five branches; c2, c6, c8, c 4 plus c5, and Bacillus small c. Differentiation of the ancestral cytochrome c into these groups may depend on its role in the electron transfer system. Acknowledgements We thank Wachenfeldt and valuable review could Prof. L. H e d e r s t e d t and Dr. C. von for critical reading of the manuscript comments. Without their help this not have been realized. 8 9 10 11 12 13 14 15 References 1 Ambler, R.P. (1991) Sequence variability in bacterial cytochrome c. Biochim. Biophys. Acta 1058, 42-47. 2 Sone, N., Kagawa, Y. and Orii, Y. (1983) Carbon monoxide-binding cytochromes in the respiratory chain of the 16 thermophilic bacterium PS3 grown with sufficient or limited aeration. J. Biochem. 93, 1329-1336. Sone, N. (1990) Respiration-driven proton pumps. In: The Bacteria, Vol. XII (Krulwich, T.A., Ed.), pp. 1-32. Academic Press, New York, NY. Sone, N., Shimada, S., Ohmori, T., Souma, Y., Gonda, M., and Ishizuka, M. (1990) A fourth subunit is present in cytochrome c oxidase from the thermophilic bacterium PS3. FEBS Lett. 262, 249-252. Sone, N. and Yanagita, Y. (1982) A cytochrome aa3-type terminal oxidase of a thermophilic bacterium. Purification, properties and proton pumping. Biochim. Biophys. Acta 682, 216-226. Nicholls, P. and Sone, N. (1984) Kinetics of cytochrome c and TMPD oxidation by cytochrome c oxidase from the thermohilic bacterium PS3. Biochim. Biophys. Acta 767, 240-247. Ishizuka, M., Machida, K., Shimada, S., Mogi, A., Tsuchiya, T., Ohmori, T., Souma, Y., Gonda, M. and Sone, N. (1990) Nucleotide sequence of the gene codingfor four subunits of cytochrome c oxidase from the thermophilic bacterium PS3. J. Biochem. 108, 866-873. Sone, N., Sekimachi, M. and Kutoh, E.(1987) Identification and properties of a quinol oxidase super-complex composed of a bc 1 complex and cytochrome oxidase in the thermophilic bacterium PS3. J. Biol. Chem. 262, 1538615391. Kutoh, E. and Sone, N. (1988) Quinol-cytochrome c oxidoreductase from the thermophilic bacterium PS3. J. Biol. Chem. 263, 9020-9026. Saraste, M., Mest. T.. Nakari, T., Jalli, T., Lauraeus, M. and Van der Oost (1991) The Bacillus subtilis cytochrome c oxidase: variation on a conserved protein theme. Eur. J. Biochem. 195, 517-525. Lauraeus, M. and Wikstr6m, M. (1993)The terminal quinol oxidases of Bacillus subtilis have different energy conservation properties. J. Biol. Chem. 268, 11470-11473. Quirk, P.G., Hickes, D.B. and Krulwich, T.A. (1993) Cloning of the cta operon from alkaliphilic Bacillus f i r m u s OF4 and characterization of the pH-regulated cytochrome caa 3 oxidase it encodes. J. Biol. Chem. 268, 678-685. De Vrij, W., Heyne, R.I. and Konings, W.N. (1989) Characterization and application of a thermostable primary transport system: Cytochrome c oxidase from Bacillus stearothermophilus. Eur. J. Biochem. 178, 763-770. Garcia-Horsman, J.A., Barquera, B., Gonzalez-Halphen, D. and Escamilla, J.E. (1991) Purification and characterization of two-subunit cytochrome aa 3 from Bacillus cereus. Mol. Microbiol. 5, 197-205. Sone, N., Kutoh, E. and Yanagita, ¥.(1989) Cytochrome c-551 from the thermophilic bacterium PS3 grown under air-limited conditions. Biochim. Biophys. Acta 977, 329334. Von Wachenfeldt, C. and Hederstedt, L. (1990) Bacillus subtilis 13-kDa cytochrome c-550 encoded by c c c A consists of a membrane-anchor and a heme domain. J. Biol. Chem. 265, 13939-13948. 210 17 Von Wachenfeldt, C. and Hederstedt, L. (1992) Molecular biology of Bacillus subtilis cytochromes. FEMS Microbiol. Lett. 100, 91-100. 18 Fujiwara, Y., Oka, M, Hamamoto, T. and Sone, N. (1993) Cytochrome c-551 of the thermophilic bacterium PS3. DNA sequence and analysis of the mature cytochrome. Biochim. Biophys. Acta 1141, 213-219. 19 Weyer, K.A., SchS_fer, M., Lottspeich, F. and Michel, H. (1987) The cyto-chrome subunit of the photosynthetic reaction center from Rhodopseudomonas t,iridis is a lipoprotein. Biochemistry 26, 2909-2914. 20 Hreggvidsson, G.O. (1991) Two structurally different cytochromes c from Bacillus azotoformans: On the evolution of Gram-positive bacteria. Biochim. Biophys. Acta 1058, 52-55. 21 Miki, K. and Okunuki, K. (1969) Cytochromes of Bacillus subtilis: physicochemical and enzymatic properties of cytochrome c-550 and c-554. J. Biochem. 66, 831-854. 22 Hon'nami, K., Oshima, T., Kihara, H. and Kagawa, Y. (1979) Cytochrome c-550 from a thermophilic bacterium PS3. Biochem. Biophys. Res. Commun. 87, 1066-1071. 23 Davidson, M.W., Gray, K.A., Knaff, D.B. and Krulwich, T. A. (1988) Purification and characterization of two soluble cytochromes from the alkaliphile Bacillus firmus RAB. Biochim. Biophys. Acta 933, 470-477. 24 Woolley, K.J. (1987) The c-type cytochromes of the Gram-positive bacterium Bacillus licheniformis. Arch. Biochem. Biophys. 254, 376-379. 25 Yumoto, I., Fukumori, Y. and Yamanaka, T. (199l) Purification and characterization of two membrane-bound c-type cytochromes from an alkaliphilic Bacillus. J. Biochem. 110, 267-273. 26 Dickerson, R.E. (1980) cytochrome c and the evolution of energy metabolism. Sci. Am. 242, 98-110. 27 Saitoh, N. and Nei, M. (1987) The neighbor-joining method: A method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425. 28 Titani, K., Ericsson, L.H., Hon-nami, K. and Miyazawa, T. (1985) Amino acid sequence of cytochrome c-552 from Thermus thermophilus HB8. Biochem. Biophys. Res. Commun. 128, 781-787. 29 Moore, G.R. and Pettigrew, G.W. (1990) Cytochromes c: Evolutionary, Structural and Physicochemical Aspects. Springer Verlag, Berlin. 30 Woese, C.R. (1987) Bacteria[ evolution. Microbiol. Rev. 51,221-271. 31 Dayhoff, M.O. (1984) Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence. Precambr. Res. 20, 299-318. 32 Preisig, O., Anthamatten, D. and Hennecke, H. (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. USA 90, 33093313. 33 Saraste, M. and Castresana, J. (1994) Cytochrome oxidase evolved by tinkering with denitrification enzymes. FEBS Lett. 341, 1-4. 34 Mather, M.W., Springer, P. and Fee, J.A. (1991) Cytochrome oxidase genes from Thermus thermophilus, nucleotide sequence and analysis of the deduced primary structure of subunit IIc of cytochrome caa 3. J. Biol. Chem. 266, 5025-5035. 35 Needleman, S.B. and Wunsch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453.
© Copyright 2026 Paperzz