MTH 1125 - Test #1 - Solutions Summer 2007 Pat Rossi Name Instructions. Show CLEARLY how you arrive at your answers. 1. Compute: limx→2 x2 −x−2 x−2 = 1. Try Plugging in: limx→2 x2 −x−2 x−2 = (2)2 −(2)−2 (2)−2 = 0 0 Division By Zero - No Good! 2. Try factoring and cancelling: limx→2 x2 −x−2 x−2 i.e., limx→2 2. Compute: limx→1 x2 +5 x2 −3 = limx→2 x2 −x−2 x−2 (x−2)(x+1) x−2 = limx→2 (x + 1) = (2 + 1) = 3 =3 = 1. Try Plugging in: limx→1 x2 +5 x2 −3 = i.e., limx→1 3. Compute: limx→−2 (1)2 +5 (1)2 −3 x2 +5 x2 −3 = −3 = −3 x2 +5 x2 −3x−10 = 1. Try Plugging in: limx→−2 Good! x2 +5 x2 −3x−10 = (−2)2 +5 (−2)2 −3(−2)−10 = 9 0 Division By Zero - No 2. Try factoring and cancelling: No Good! Factoring and cancelling only works when Step 1 yields 00 . 3. Compute the one-sided limits limx→−2− x2 +5 x2 −3x−10 x → −2− ⇒ x < −2 ⇒ x+2<0 = limx→−2− x2 +5 (x+2)(x−5) = 9 (−ε)(−7) = 9 (ε)(7) = ( 97 ) ε = +∞ limx→−2+ x2 +5 x2 −3x−10 = limx→−2+ x2 +5 (x+2)(x−5) = 9 (ε)(−7) = (− 97 ) ε = −∞ x → −2+ ⇒ x > −2 ⇒ x+2>0 Since the one-sided limits are not equal, limx→−2 x2 +5 x2 −3x−10 Does not exist 4. f (x) = 4x2 + 3x − 6. Compute f 0 (x) using the definition of derivative (i.e., using the “limiting process”). f 0 (x) = lim∆x→0 = lim∆x→0 = lim∆x→0 f (x+∆x)−f (x) ∆x = lim∆x→0 [4(x+∆x)2 +3(x+∆x)−6]−[4x2 +3x−6] ∆x [4(x2 +2x∆x+∆x2 )+3(x+∆x)−6]−[4x2 +3x−6] ∆x [8x∆x+4∆x2 +3∆x] ∆x = lim∆x→0 = lim∆x→0 ∆x[8x+4∆x+3] ∆x [4x2 +8x∆x+4∆x2 +3x+3∆x−6]−[4x2 +3x−6] = lim∆x→0 (8x + 4∆x + 3) = 8x + 3 i.e., f 0 (x) = 8x + 3 5. f (x) = 6x+4 . 3x−2 Find all vertical and horizontal asymptotes. Graph f (x) . Verticals Find the x-values that cause division by zero. 3x − 2 = 0 ⇒ 3x = 2 ⇒ x = 23 possible vertical asymptote limx→ 2 − 3 6x+4 3x−2 = limx→ 2 − 3 6x+4 3(x− 23 ) = 8 (3)(−ε) 6x+4 3(x− 23 ) = 8 (3)(ε) = ( 83 ) (−ε) = −∞ − x → 23 ⇒ x < 23 ⇒ x − 23 < 0 limx→ 2 + 3 6x+4 3x−2 = limx→ 2 + 3 = ( 83 ) (ε) = +∞ + x → 23 ⇒ x > 23 ⇒ x − 23 > 0 Infinite limits tell us that x = 23 IS a vertical asymptote. 2 ∆x Horizontals Let x → −∞ and let x → +∞ limx→−∞ 6x+4 3x−2 = limx→−∞ 6x = limx→−∞ 2 = 2 3x limx→+∞ 6x+4 3x−2 = limx→+∞ 6x = limx→+∞ 2 = 2 3x Finite, constant limits tell us that y = 2 IS a horizontal asymptote Graph: f (x) = 6x+4 3x−2 y=2 x=b 6. Compute: limx→5 √ x+11−4 x−5 = 1. Try Plugging in: √ √ (5)+11−4 limx→5 x+11−4 = (5)−5 = x−5 0 0 Division By Zero - No Good! 2. Try factoring and cancelling: √ limx→5 x+11−4 x−5 = limx→5 = √ limx→5 x+11−4 x−5 x+11−16 √ (x−5)[ x+11+4] = limx→5 1 8 i.e., limx→5 √ x+11−4 x−5 = 1 8 3 · √ √x+11+4 x+11+4 = √ 2 x+11) −(4)2 √ limx→5 (x−5) x+11+4 [ ] (x−5) √ (x−5)[ x+11+4] ( = limx→5 1 √ x+11+4] [ = h√ 1 i (5)+11+4 = 7. ~ x 1.0 1.4 1.49 1.499 1.4999 f (x) 6.25 96.789 788.78 12768.12 45877.79 x 2.0 1.6 1.51 1.501 1.5001 f (x) 6.25 96.789 788.78 12768.12 45877.79 (a) limx→1.5− f (x) = ∞ (b) limx→1.5+ f (x) = ∞ (c) Sketch a graph of f (x) x = 1.5 4
© Copyright 2026 Paperzz