Decay coupling constants sum rules for dibaryon octet into two

2016
Decay coupling constants sum rules for
dibaryon octet into two baryon octets with
first order SU(3) symmetry breaking
HUGS 2016
ELÍAS NATANAEL POLANCO EUÁN
CINVESTAV MÉRIDA | Applied Physics Department
1
1. Introduction
● Quarks (confined by color force):
● Nature (color singlets):
π‘ž and π‘žΜ…
Baryons (π‘ž1 π‘ž2 π‘ž3 ) ≑ 𝐡
Mesons (π‘ž1 π‘žΜ…2 ) ≑ 𝑀
Multiquark states
𝑀′
𝑀
● Multiquark states:
Tetraquarks (π‘žβž
Μ…2 π‘žβž
Μ…4 )
1π‘ž
3π‘ž
𝐡
𝑀
⏞1 π‘ž2 π‘ž3 π‘žβž
Pentaquarks (π‘ž
Μ…5 )
4π‘ž
Hexaquarks
Etc.
2
Μ…
𝐡
𝐡
β€²
⏞ π‘ž π‘ž ⏞
Μ… Μ… Μ…
(π‘ž
1 2 3 π‘ž4 π‘ž5 π‘ž6 ) ≑ 𝐡6
Baryon number = 0
𝑀
𝑀′
𝑀′′
βžπ‘ž
Μ… ⏞ Μ… ⏞ Μ…
(π‘ž
1 2 π‘ž3 π‘ž4 π‘ž5 π‘ž6 ) ≑ 𝑀 6
● Hexaquarks:
{
𝐡
Baryon number = 2
{
𝐡′
⏞ π‘ž π‘ž ⏞
{(π‘ž
1 2 3 π‘ž4 π‘ž5 π‘ž6 ) ≑ 𝐷
πƒπ’π›πšπ«π²π¨π§
(a stable dibaryon already exists in nature: deuteron (𝑝𝑛)).
● Dibaryons π‘†π‘ˆ(3) [1-5]:
̅̅̅̅⨁27 =
1⨁8
⏟ 𝑆 ⨁8𝐴 ⨁10⨁10
8βŸβŠ— 8
baryon octet + baryon octet
dibaryon multiplets
Μ…Μ…Μ… multiplet 𝐷̅̅̅̅
(deuteron belongs to the dibaryon Μ…10
10 [1]).
3
2. Abstract and notation
Sum rules for strong decay coupling constants of dibaryon octets into two ordinary baryon
octets (8𝑆,𝐴 ⟢ 8 βŠ• 8) with first order SU(3) symmetry breaking are determined (recently,
Μ…Μ…Μ…Μ…, 10 ⟢ 8 βŠ• 8 )
sum rules for strong decays of dibaryon decuplets into two baryon octets (10
were determined in Ref. [6]):
● Notation [7].
Ordinary octet baryon:
Dibaryon octet:
the (π‘Œ, 𝐼, 𝐼3 ) states of 𝐷8 are denoted by 𝐷8 (π‘Œ, 𝐼, 𝐼3 ) with π‘Œ hypercharge, 𝐼 Isospin, and 𝐼3
isospin third component.
4
3. Strong decay coupling constants
3.1.
SU(3) SYMMETRY LIMIT
Interaction Hamiltonian for Yukawa couplings [8]:
Μ…Μ…Μ…8 (𝐡8 𝐡8β€² + 𝐡8β€² 𝐡8 )] + 𝑔0β€² Tr[𝐷
Μ…Μ…Μ…8 (𝐡8 𝐡8β€² βˆ’ 𝐡8β€² 𝐡8 )]
𝐻0int ≑ 𝑔80 Tr[𝐷
8
β‡’ 2 parameters: 𝑔80 and 𝑔80β€² for symmetric and antisymmetric final state, respectively.
3.2.
FIRST ORDER SU(3) SYMMETRY BREAKING
SU(3) symmetry breaking interaction transforms like the hypercharge π‘Œ [7]:
1 1 0 0
πœ†8 =
(0 1 0 )
√3 0 0 βˆ’2
5
● Symmetric final state [8]:
Μ…Μ…Μ…8 πœ†8 (𝐡8 𝐡8β€² + 𝐡8β€² 𝐡8 )] + 𝑔2β€² Tr[𝐷
Μ…Μ…Μ…8 (𝐡8 𝐡8β€² + 𝐡8β€² 𝐡8 )πœ†8 ]
𝐻Sint ≑ 𝑔1β€² Tr[𝐷
Μ…Μ…Μ…8 𝐡8β€² ]Tr[𝐡8 πœ†8 ]) + 𝑔4β€² Tr[Μ…Μ…Μ…
+ 𝑔3β€² (Tr[Μ…Μ…Μ…
𝐷8 𝐡8 ]Tr[𝐡8β€² πœ†8 ] + Tr[𝐷
𝐷8 πœ†8 ]Tr[𝐡8 𝐡8β€² ]
⟹ 5 parameters in total: 𝑔80 and π‘”π‘˜β€² , π‘˜ = 1,2,3,4 .
● Antisymmetric final state [8]:
Μ…Μ…Μ…8 πœ†8 (𝐡8 𝐡8β€² βˆ’ 𝐡8β€² 𝐡8 )] + 𝑔2 Tr[𝐷
Μ…Μ…Μ…8 (𝐡8 πœ†8 𝐡8β€² βˆ’ 𝐡8β€² πœ†8 𝐡)]
𝐻Aint ≑ 𝑔1 Tr[𝐷
Μ…Μ…Μ…8 (𝐡8 𝐡8β€² βˆ’ 𝐡8β€² 𝐡8 )πœ†8 ] + 𝑔4 (Tr[Μ…Μ…Μ…
Μ…Μ…Μ…8 𝐡8β€² ]Tr[𝐡8 πœ†8 ])
+𝑔3 Tr[𝐷
𝐷8 𝐡8 ]Tr[𝐡8β€² πœ†8 ] βˆ’ Tr[𝐷
⟹ 5 parameters in total: 𝑔80 and π‘”π‘˜ , π‘˜ = 1,2,3,4 .
6
4. Sum rules
4.1.
SYMMETRIC FINAL STATE
9 independent strong decay coupling constants described in terms of 5 parameters (𝑔80 and
π‘”π‘˜β€² ) ⟹ 4 sum rules:
7
With identical relationships for 𝐺 [𝐷8 (π‘Œ, 𝐼, 𝐼3 ⟢ 𝐡′ 𝐡)] = + 𝐺 [𝐷8 (π‘Œ, 𝐼, 𝐼3 ⟢ 𝐡′ 𝐡)] .
8
4.2.
ANTISYMMETRIC FINAL STATE
8 independent strong decay coupling constants described in terms of 5 parameters (𝑔80 and
π‘”π‘˜ ) ⟹ 3 sum rules:
With identical relationships for 𝐺 [𝐷8 (π‘Œ, 𝐼, 𝐼3 ⟢ 𝐡′ 𝐡)] = βˆ’ 𝐺 [𝐷8 (π‘Œ, 𝐼, 𝐼3 ⟢ 𝐡′ 𝐡)] .
9
5. Concluding remarks
ο‚· Hexaquarks states with baryon number 2, dibaryons, were considered.
ο‚· Earlier, sum rules for strong decays of dibaryon decuplets into two ordinary baryon
octets have been calculated [6].
ο‚· In this work sum rules for strong decay coupling constants of dibaryon octet into two
ordinary baryon octets with first order SU(3) symmetry breaking were determined.
ο‚· Next steps: experimental data input, sum rules for strong decays of the dibaryon 27-plet
into two baryons, extension to SU(4) symmetry, … .
10
6. References
[1] R. J. Oakes, Phys. Rev. 131, 2239 (1963).
[2] R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977).
[3] S-Q Xie and Q-R. Zhang, Phys. Lett. 143B, 441 (1984).
[4] M. Oka, Phys. Rev. D 38, 298 (1988).
[5] S. D. Paganis, et al., Phys. Rev. C 62, 024906 (2000).
[6] V. Gupta and G. Sánchez-Colón, Mod. Phys. Lett. A 30, 1550010 (2015).
[7] P. A. Carruthers, Introduction to Unitary Symmetry (Interscience, USA 1966).
[8] M. Muraskin and S. L. Glashow, Phys. Rev. 132, 482 (1963).
11