Dengue virus capsid protein functions and its i hibiti by inhibition b pep14-23 14 23 Nuno C. Santos Instituto de Medicina Molecular Faculdade de Medicina da Universidade de Lisboa Portugal [email protected] Dengue epidemics Different clinical profiles • No symptoms • Mild symptoms • Acute clinical cases D Dengue Hemorrhagic Fever H h i F Dengue Shock Syndrome Organs infected • Liver • Immune system • Hearth, brain, muscle Disease vectors Aedes aegypti gyp Aedes albopictus Worldwide yearly: • 2.5 billion people at risk areas • 390 millions infected • 20 000 deaths N No specific treatment available ifi t t t il bl Senior (2010) Lancet Infect Dis 7:636 Dengue virus Flaviviridae family • Dengue virus (DENV) Dengue virus (DENV) • Zika virus • West Nile virus West Nile virus • Yellow fever virus • Tick Tick‐borne borne encephalitis virus encephalitis virus • Hepatitis C virus Yu et al. (2008) Science 319:1834 Polyprotein Dengue is an enveloped virus with Dengue is an enveloped virus with a ss(+)RNA genome of ~11kb. • 3 structural proteins o Capsid (C) o Membrane (M) o Envelope (E) Envelope (E) • 7 non‐structural proteins Dengue virus Umareddy et al. (2007) Virol. J. 4:91 Polyprotein Dengue is an enveloped virus with Dengue is an enveloped virus with a ss(+)RNA genome of 11kb. • 3 structural proteins o Capsid (C) o Membrane (M) o Envelope (E) Envelope (E) • 7 non‐structural proteins Dengue virus Mukhopadhyay et al. (2005) Nat. Rev. Microbiol.3:13 Flaviviridae disrupt the host lipid homeostasis Lipid droplets (LDs) size and number increased Following DENV infection Lipoproteins levels affected Intracellular membrane network disorganization DENV C protein in LDs surface DENV C protein in LDs surface LDs C protein merge Samsa et al. (2009) PLoS Pathog 5:e1000632 Lipid droplets Intracellular lipid storage and distribution LDs structure • Neutral lipids – internal core • Polar lipids – surface monolayer • Surface proteins LDs proteins • • • • Perilipin (Perilipin 1) ADRP (Perilipin ( l 2)) TIP47 (Perilipin 3) … Farese and Walther (2009) Cell 139:855 Krahmer et al. (2009) Cell 139:1024 Force spectroscopy DENV C protein ‐ AFM tip functionalization Vacuum chamber APTES deposition – 1h Glutaraldehyde 2.5 % (v/v) – 20 min DENV C protein C 167 M – 30 min https:/.../news_releases/2005/NR‐05‐10‐07p.html DENV capsid protein Guedes et al. (2016) Nature Nanotechnol. 11: 687 Carvalho et al. (2010) ACS Nano 4: 4609 Barattin et al (2008) Chem. Commun. 13: 1513 Force spectroscopy approach retract Carvalho & Santos (2012) IUBMB Life 64: 465 DENV C interaction with LDs requires K+ Force rupture Force rupture histograms Force mapping images Force mapping images height map adhesion map TEE buffer with KCl 10 mM TEE buffer with KCl 100 mM TEE buffer with KCl 400 mM Carvalho et al. (2012) J. Virol. 86: 2096 DENV C interaction with LDs requires K+ Buffer conditions C1/2 (nM) ∆ζmax (mV) TEE + 10 mM M KCl 5 9 2.2 5.9 22 27 9 0.4 27.9 04 TEE + 100 mM KCl 85.7 17.6 34.4 1.3 TEE + 400 mM KCl 188 4 68.8 188.4 68 8 27 6 2.3 27.6 23 Carvalho et al. (2012) J. Virol. 86: 2096 DENV C interaction with LDs requires K+ Lipid droplets Lipid droplets DENV C DENV C Effects on different steps of the DENV replication cycle of Na+/K+‐ATPase partial inhibition (decreased [K+]int) For DENV‐infected HepG2 cells For DENV infected HepG2 cells treated with ouabain, a redistribution of DENV C protein to a diffuse pattern in the cytosol y was observed (D‐F). ( ) Treatment with ouabain resulted in an up to 50‐fold inhibition of infectious virus production (G), followed by a recovery from the loss of viability caused by infection (H). No significant difference was No significant difference was found in the DENV RNA content at (I), indicating that the alterations in the [ +]] inhibit viral intracellular [K assembly without interfering with RNA replication. Control experiments ensured that these ouabain concentrations do not affect the viability of noninfected cells. DENV C interaction with LDs requires LDs protein(s) F Force‐rupture t hi t histograms Trypsin 0 µM 0 µM Trypsin 1 µM Trypsin 1 µM Trypsin 5 µM Trypsin 10 µM Carvalho et al. (2012) J. Virol. 86: 2096 DENV C interaction with LDs requires LDs protein(s) Carvalho et al. (2012) J. Virol. 86: 2096 DENV C protein regions involved in the interaction with LDs Nuclear magnetic resonance (NMR) Nuclear magnetic resonance (NMR) Martins et al. (2012) Biochem. J., 444: 405 Sequence conservation of the Flavivirus C proteins Computational predictions Computational predictions N‐terminus L1‐2 α2‐α2’ Conserved regions on the Flavivirus C proteins sequences C proteins sequences Martins et al. (2012) Biochem. J., 444: 405 Inhibition of the interaction between DENV C and LDs NMR pep5‐26 (RKKTGRPSFNMLKRARNRVSTV) pep14‐23 (NMLKRARNRV) Zeta potential p DENV C protein pep14‐23 pep14‐23 + trypsin pep5‐26 Martins et al. (2012) Biochem. J., 444: 405 Faustino et al. (2015) ACS Chem. Biol., 10: 517 Inhibition of the interaction between DENV C and LDs Martins et al. (2012) Biochem. J., 444: 405 Inhibition of the interaction between DENV C and LDs Lipoproteins Distribution and recovery of lipids in the bloodstream Distribution and recovery of lipids in the bloodstream Lipoproteins structure • Neutral lipids – internal core • Polar lipids – surface monolayer • Surface proteins Farese and Walther (2009) Cell 139:855 Cushley and Okon (2002) Annu Rev BBS 31:177 Lipoproteins in Flaviviridae infections Lipoproteins in Flaviviridae • Altered bloodstream levels • LDL receptor involved in viral entry LDL receptor involved in viral entry • HCV forms lipo‐viro‐particles DENV C interaction with lipoproteins Force spectroscopy Force spectroscopy VLDL with KCl VLDL with NaCl LDL with KCl VLDL in KCl VLDL in KCl without DENV C DENV C‐ lipoproteins interaction is interaction is dependent on K+ and on and on VLDL intrinsic components Catching a Catching a ride? Faustino et al. (2014) Nanomedicine, 10: 247 DENV C interaction with lipoproteins Dynamic light scattering 45 * Lipop protein diame eter (nm) * 40 * * VLDL 6 nm * p < 0.001 * p < 0 001 35 Mann–Whitney U test 30 VLDL LDL 25 20 0,0 0,5 1,0 1,5 2,0 2,5 3,0 [DENV C] (µM) Surface interaction between DENV C and VLDL NV C d VL L Faustino et al. (2014) Nanomedicine, 10: 247 DENV C interaction with lipoproteins DENV LVP Apolipoprotein E DENV C DENV C target on VLDL VLDL Hickenbottom et al. (2004) Structure 12:1199 DENV C ApoE ApoE N-terminus 1 Per3 C-terminus 215 ApoE-Per3 consensus KVEQAVETEPEPELRQQTEWQSGQRWELALGRFWDYLRWVQTLSEQVQEELLSSQVT ATSLDGFDVASVQQQRQEQSYFVRLGSLSERLRQHAYEHSLGKLRATKQRAQEAL hXQQXEXQS L TL EXX 57 269 ApoE N-terminus 58 Per3 C-terminus 270 ApoE-Per3 consensus QELRALMDETMKELKAYKSELEEQLTPVAEETRARLSKELQAAQARLGADMEDVCGRLVQ LQLSQVLSLMETVKQGVDQKLVEGQEKLHQMWLSWNQKQLQGPEKEPPKPEQVESRALTM XELXXhh LXE hXE KELQXXE E LXX 117 329 ApoE N-terminus 118 Per3 C-terminus 330 ApoE-Per3 consensus YRGEVQAMLGQSTEELR VRLASHLRKLRKRLLRDADDLQKRLAVYQAGAREGAERGLS FRDIAQQLQATCTSLGSSIQGLPTNVKDQVQQARRQVEDLQATFSSIHS FQDLSSSILA XR QXh T LXTXh+ RXX-DLQXXh LX 175 388 ApoE N-terminus 176 Per3 C-terminus 389 ApoE-Per3 consensus AIRERLGPLVEQGRVRAATVGSLAGQPLQERAQAWGERLRARMEE QSRERVASAREALDHMVEYVAQNTPVTWLVGPFAPGITE KAPEEKK XXRERh E V AXG +XXE 220 434 Faustino et al. (2014) Nanomedicine, 10: 247 Faustino et al. (2015) Sci. Rep., 5: 10592 DENV C interaction with lipoproteins NMR pep14‐23 inhibits DENV C‐VLDL binding DLS AFM Martins et al. (2012) Biochem. J., 444: 405 Faustino et al. (2015) ACS Chem. Biol., 10: 517 Faustino et al. (2015) Sci. Rep., 5: 10592 Understanding the inhibition by pep14-23 NMR with DPC micelles Tensiometry with POPG monolayers Zeta potential with POPG LUVs CD with POPG LUVs POPC (zwitterionic) POPC (zwitterionic) POPG:POPC 1:1 POPG (anionic) Faustino et al. (2015) ACS Chem. Biol., 10: 517 Understanding the inhibition by pep14-23 DENV C protein N‐terminal conserved region……….14NMLKRERNRVS24 Importin α N‐terminal autoinhibition region………..46QMLKR-RN-VS54 • Anionic phospholipids (POPG) trigger the α‐helical conformation conversion of pep14‐23 • The interaction and inhibition mechanisms may involve phospholipids from LDs and VLDL • DENV C may have an auto‐inhibition mechanism similar to importin DENV C may have an auto‐inhibition mechanism similar to importin α Faustino et al. (2015) ACS Chem. Biol., 10: 517 Nuno C. Santos Sónia Gonçalves Filomena Carvalho Ivo Martins Axel Hollmann Marco Domingues André Faustino Ana Filipa Guedes Marcelo Augusto Bárbara Gomes á Mário Felício Ana Martins Patrícia Carvalho Patrícia Silva Marcin Makowski Catarina Lopes André Nascimento Teresa Freitas Acknowledgments Funding Federal University of Rio de J Janeiro, Brazil i B il • Andrea Da Poian • Fábio Almeida • Ronaldo R ld M Mohana‐Borges h B Other Groups from IMM • Miguell Castanho h • Francisco Enguita A*STAR Si A*STAR, Singapore • Peter Bond • Roland Huber
© Copyright 2025 Paperzz