Math 161 Exam 2 Review 1. (a) x = 11 (b) x = 1 or x = 2 4. (a) ln x + 12 ln(1 + x2 ) (b)3 log2 x+ 21 log2 (x+1)−2 log2 (x−2) 2. (a) x = 125 (b) x = 27 (c) x = log104 3+7 (d) x = ln35 5. log4 3. (a) 3x reflect about y−axis (b) x−1 (x+1)4 (3x+1)3 log5 (2x−1) 2x 6. (a) x = 13 or − 13 (b) x = −6 (c) x = 1 or 3 shift down by 2 / 3−x / 3−x 7. (a) x = (b) x = −2 8. r = 1 4 3 ln 7+2 ln 4 ln 7−5 ln 4 ln 2−5 ln 3 4 ln 2−7 ln 3 8 5 ln 9. (a) k = 1 7 5 3 ln (b) 300e 7 ln( 3 ) 7 ln 3 (c) t = ln ( 53 ) 10 (b) ex shift right by 1 / ex−1 reflect about x−axis / shift up by 3 −ex−1 / −ex−1 + 3 10. t = 5 ln 2 0.087 11. (a) f 0 (x) = 12x2 − 12x + 1 1 −4 (b) f 0 (x) = −3x−2 + 3x− 2 + 15 2 x 9 x 8 0 (c) f (x) = 2 e + x (d) f 0 (x) = x4 (x2 + 7x − 1) + (3 + 4 ln x)(2x + 7) 1 (c) log2 (x) shift left by 2 / log 2 (x + 2) reflect about x−axis / − log 2 (x + 2) −1 2 3 √ 12. y − 6 = 11(x − 2) (d) ln(x) reflect about y−axis / ln(−x) shift up by 3 / − ln(−x) + 3 1 x 2 )−( x+e )(9x ) (e) f 0 (x) = ( 2 x )(1+3x (1+3x3 )2 2 (f) f 0 (x) = 13 (8x4 − 8x2 + 3x)− 3 (32x3 − 16x + 3) 3 (g) f 0 (x) = 7ex +4x+9 (3x2 + 4) 3 1 √ 9 − 21 (h) f 0 (x) = 9√x+8 + 83 x− 2 ) 3 x(2x 13. (a) abs. max: abs. min: (b) abs. max: abs. min: f (5) = 22; f (3) = 2 f (−2) = 24; f (−4) = −28 14. (a) x-int: 1,4; y-int: -16 (b) f 0 (x) = 3(x − 4)(x − 2) (c) f increases on (−∞, 2) and (4, ∞). It decreases on (2, 4). (d) It has a local maximum f (2) = 4 and a local min f (4) = 0. (e) f 00 (x) = 6(x − 3) (f) f is concave up on (3, ∞) and concave down on (−∞, 3). It has a point of inflection at (3, 2). (g) y (2,4) (3,2) (4,0) 0 1 2 3 x 4 -16 15. (a) x-int: 0,-2; y-int: 0 (b) f 0 (x) = 2x2 (2x + 3) (c) f increases on (− 32 , ∞). It decreases on (−∞, − 32 ). 27 (d) It has a local min f (− 32 ) = − 16 . 00 (e) f (x) = 12x(x + 1) (f) f is concave up on (−∞, −1) and (0, ∞). It is concave down on (−1, 0). It has point of inflections at (−1, −1) and (0, 0). (g) y x 0 (-2,0) (-1,-1) (− 3 , − 27 ) 2 16 2
© Copyright 2026 Paperzz