Monte-Carlo simulations of artificial transmutation for medical

Monte Carlo simulations
of artificial transmutation
for
medical isotope production,
photofission
and
nuclear waste management
Laser Electron Scatter Photons at Light
Sources for Nuclear & Allied Research,
April 23, 2010, CLS
Barbara Szpunar
Collaborative project
Project initialized by professor Chary Rangacharyulu
Department of Physics and Engineering Physics,
University of Saskatchewan, Saskatoon, SK S7N 5E2
The FLUKA International Collaboration
UPDATES
UPDATES ON
ON THE
THE STATUS
STATUS OF
OF THE
THE FLUKA
FLUKA MONTE
MONTE CARLO
CARLO TRANSPORT
TRANSPORT CODE
CODE
A.
A. Ferrari,
Ferrari, M.Lorenzo-Sentis,
M.Lorenzo-Sentis, S.
S. Roesler,
Roesler, G.
G. Smirnov,
Smirnov, F.Sommerer,
F.Sommerer, C.Theis
C.Theis and
and
V.Vlachoudis,
V.Vlachoudis, CERN,
CERN, Geneva,
Geneva, Switzerland
Switzerland
M.
M. Carboni,
Carboni, A.
A. Mostacci,
Mostacci, M.
M. Pelliccioni
Pelliccioni and
and R.
R. Villari,
Villari, INFN,
INFN, Frascati,
Frascati, Italy
Italy
V.
V. Anderson,
Anderson, N.
N. Elkhayari,
Elkhayari, A.
A. Empl,
Empl, K.
K. Lee,
Lee, B.
B. Mayes,
Mayes, L.
L. Pinsky
Pinsky and
and N.
N. Zapp
Zapp Physics
Physics
Department,
Department, University
University of
of Houston,
Houston, Houston,
Houston, TX
TX 77204-5005,
77204-5005, USA
USA
K.
K. Parodi,
Parodi, H.
H. Paganetti
Paganetti and
and T.
T. Bortfeld,
Bortfeld, Massachusetts
Massachusetts General
General Hospital,
Hospital, Department
Department of
of
Radiation
Radiation Oncology,
Oncology, Boston,
Boston, MA,
MA, 02114
02114 USA
USA
G.
G. Battistoni,
Battistoni, M.
M. Campanella,
Campanella, F.
F. Cerutti,
Cerutti, P.
P. Colleoni,
Colleoni, E.
E. Gadioli,
Gadioli, M.V.
M.V. Garzelli,
Garzelli, M.
M. Lanza,
Lanza,
INFN
and
Univ.
of
Milan,
Italy
S.Muraro,
A.
Pepe
and
P.
Sala,
S.Muraro, A. Pepe and P. Sala, INFN and Univ. of Milan, Italy
T.
T. N.
N. Wilson.
Wilson. NASA/JSC,
NASA/JSC, Houston,
Houston, TX,
TX, 77058
77058 USA
USA
D.
D. Alloni,
Alloni, F.
F. Ballarini,
Ballarini, M.
M. Liotta,
Liotta, A.
A. Mairani,
Mairani, A.
A. Ottolenghi,
Ottolenghi, D.
D. Scannicchio
Scannicchio and
and S.
S. Trovati,
Trovati,
INFN
INFN and
and Univ.
Univ. Pavia,
Pavia, Italy
Italy
J.
J. Ranft,
Ranft, Siegen
Siegen Univ.,
Univ., Germany
Germany
A.
SLAC, USA
USA
A. Fasso’,
Fasso’, SLAC,
Content
• Background on FLUKA simulation method
• Photon induced artificial transmutation
•
•
•
medical isotope production
photofission
nuclear waste management
• Summary and conclusions
FLUKA
http://www.fluka.org
•
•
Main authors:A. Fassò, A. Ferrari, J. Ranft, P.R. Sala
Contributing authors: G.Battistoni, F.Cerutti, T.Empl,
M.V.Garzelli, M.Lantz, A. Mairani, V.Patera, S.Roesler,
G. Smirnov, F.Sommerer, V.Vlachoudis
• >2000 users
• Developed and maintained under an INFN-CERN
agreement Copyright 1989-2008 CERN and INFN
FLUKA code
• FLUKA (FLUktuierende KAskade), fully integrated
Monte Carlo simulation package for the interaction
and transport of particles and nuclei in matter
• Well tested models
• Optimized by comparing with experimental data
• Fully analogue code or biased mode
• Double precision used, 10-10 energy conservation
• 60 particles modeled including polarized light
• First Monte Carlo particle transport code with
photonuclear interactions: MeV – TeV energy range
FLUKA2008.3b version
• Giant Dipole Resonance (GDR) cross sections, the
library for energy range between 6 and 60 MeV (0.2
MeV)
• The libraries professionally evaluated (e.g. IAEA );
corrected for consistency
• Statistically selected evaporation or fission models
• No fission for nuclei with Z less than 70 (65)
• Not up-to-date photofission model; heavily
underestimated for low energy photons
Photonuclear reaction (GDR)
E
Typical nuclear excitation
spectrum
77*A-1/3 [MeV]
Energy / Width
[MeV]
80
Energy
Width
60
40
77*A-1/3
20
23*A-1/3
0
Excitation Energy
0
0
50
100
150
Atomic mass
200
250
Medical Isotopes (photons versus protons)
0.6
1e+5
100
0.5
1e+4
Cross Sections [barns]
1e+3
Cross Sections [barns]
99
Mo, (,n) Mo
100
99
100
Mo
Mo (p,2n) 99m100
TcMo, (,n) 99m
193
192
Tc
Ir (,n) Ir 193Mo (p,2n)
Ir (,n) 192Ir
98
Mo(n,)99Mo
191
Ir(n,)192Ir
0.4
1e+2
1e+1
0.3
1e+0
0.2
1e-1
1e-2
0.1
1e-3
0.0
1e-4
5
1e-8
1e-7
10
1e-6
1e-5
15
1e-4
1e-3
20
1e-2
1e-1 251e+0
Incident
Incident Energy
Energy [MeV]
[MeV]
http://www.nndc.bnl.gov
1e+1 30
I: FLUKA hybrid simulations
• Five runs (each 106 particles, GDR energy)
•Energy deposition, equivalent dose
•Fluence (n = Lparticle / Vtarget dn/dlnE):
neutron, photon, proton
•Residual nuclei (Rn- per particle)
No time
dependence
Time
dependence
• Calculate induced activity for a given beam intensity (I)
N (t  ti )  R (1  e  t /  )
dN (t  ti )
 R (1  e  t i /  ) e  ( t  t i ) / 
dt
R = I * Rnn
tii – irradiation time
τ – mean life
ActivityNN(t) = N(t) Activityatom
atom
II: FLUKA induced activity simulations
Time dependence
• Set irradiation and cooling time, beam intensity
• Perform five runs using FLUKA’s exact analytical
implementation of Bateman equations for induced
activity calculations
• Total activity
• Yield
Photonuclear GDR interaction in natural Ir and 193Ir
(target: 1cm (d) x 4 cm (h)) (CNS 2010)
Natural Ir
(37% of 191Ir and 63% of 193Ir)
192Ir,
T1/2 = 73.83 d
193Ir
target
193Ir
Natural Ir, n reflected by Be
target
Produced
Produced Isotope
Isotope
(reaction)
(reaction)
Yield
Yield [per
[per one
one
3
photon/cm
] 3]
photon/cm
Error
Error
[%]
[%]
(n,γ) 194Ir#
(n,γ) 194Ir#
(γ,e+e-)atomic 193Ir
(γ,e+e-)atomic 193Ir
(γ,n) 192Ir
(γ,n) or (n,γ)* 192Ir
191
(γ,2n)
(γ,2n) 191Ir
Ir
Pb container
1.33x10-4
1.23x10-4
1.28x10-3
1.26x10-3
2.04x10-2-2
1.28x10
-4
9.16x10
8.58x10-4
0.2
2.4
0.1
1.6
0.04
0.5
0.1
2
190
(γ,p) 192
Os
(γ,3n)
Ir
-8
1.97x10
7.6x10-3
42
0.3
#Secondary neutron capture
Yield [per one
photon/cm3]
Yield [per one
photon/cm3]
Error
[%]
(n,γ) 194Ir#
3.19x10-4
1.9
(γ,e+e-)atomic 193Ir
1.29x10-3
0.9
(γ,n) or (n,γ)* 192Ir
1.31x10-2
0.4
(γ,2n) 191Ir
9.06x10-4
1.7
(γ,3n) 190Ir
7.51x10-3
0.3
(γ,p) 190Os
2.0x10-7
99
(37% of 191Ir and 63% of 193Ir)
* 191Ir
Produced Isotope
(reaction)
Produced Isotope
(reaction)
Error
[%]
(Reaction) Produced
Isotope
Yield [per one
photon/cm3]
Error
[%]
(n,γ) 194Ir#
3.52x10-4
1.7
1
(γ,e+e-)atomic 193Ir
1.29x10-3
0.7
1.32x10-2
0.3
(γ,n) or (n,γ)* 192Ir
1.33x10-2
0.2
(γ,2n) 191Ir
8.87x10-4
0.4
(γ,2n) 191Ir
8.92x10-4
1.1
(γ,3n) 190Ir
7.56x10-3
0.9
(γ,3n) 190Ir
7.55x10-3
0.3
(n,γ) 194Ir#
3.44x10-4
1.2
(γ,e+e-)atomic 193Ir
1.29x10-3
(γ,n) or (n,γ)* 192Ir
100Mo transmutation;
FLUKA; Proton versus photon 100
Geometry (target: 1.2 cm (d) x 3.6 cm (h)), energy
deposition
(p,2n)
(γ,n)
14.8 MeV
22 MeV
Natural Mo: 9.63% 100Mo, 24.13% 98Mo
FLUKA; Proton versus photon 100Mo
transmutation; Equivalent dose
(p,2n)
(γ,n)
Wn: 10 (2-20 MeV), 5 (above) and 20 (below this energy)
FLUKA; Proton versus photon 100Mo
transmutation
Produced Isotope
(reaction)
Yield
Yield[per
[perone
one
3
] 3]
proton/cm
photon/cm
100Mo target
Natural
Mo target
Becontainer
container
Pb
Error
Error[%]
[%]
Produced Isotope
(reaction)
100Tc
(p,n) 101
(n,γ)
Mo#
-4
5.44x10
4.29 x10-6
2.9
0.9
(n,γ) 101Mo#
3.65 x10-6
1.2
10.4
(γ,e+e-)atomic 100Mo
7.85 x10-5
0.4
0.01
1.6
(γ,n) 99 Mo
1.31 x10-2
0.03
(γ,2n) 98Mo
6.06 x10-3
0.1
(γ,3n) 97Mo
9.27 x10-5
0.6
(γ,4n) 96Mo
1.04 x10-4
0.3
99Tc
+e-)
100Mo
(γ,e(p,2n)
atomic
-3
4.14x10
6.32 x10-5
(~ 2x10-3 99mTc)
(γ,n)&(n,γ)#
(p,3n) 98Tc99 Mo
-4 -3
1.27 x10
7.23x10
98Mo
(γ,2n)&(γ,γ)*
101
(n,γ) Mo#
-4
7.07 x10
-6
1.00x10
0.2
77.5
(γ,3n)&(γ,n)* 97Mo
4.71 x10-3
0.1
(p,p) 100Mo
(γ,4n)&(γ,2n)* 96Mo
2.09x10-4
2.15 x10-3
1.1
0.1
(p,n&p) 99Mo95
(γ,5n)&(γ,3n)* Mo
9.42x10-h5-3
3.18 x10
4.8
0.1
#Secondary neutron capture; * 98Mo
Yield [per one
photon/cm3]
100Mo target
Pb container
Error [%]
Natural Mo: 9.63% 100Mo, 24.13% 98Mo
FLUKA hybrid versus FLUKA calculations
Photonuclear (14.8 MeV) transmutation (
(1012 photons/s)
100
99
Mo (n) Mo)
NRU produces (in reactor) per year :
~3.65 x 1022 99 Mo atoms
~24 g Mo with 25% 99Mo
Burns 10% of 10 kg HEU (90%, Al) uranium
Waste: 9kg HEU
4.5e+14
4.0e+14
3.5e+14
Number of atoms per g
6 x 1021 atoms in 1g of Mo
3.0e+14
2.5e+14
2.0e+14
99
Hybrid FLUKA ( Mo)
99
FLUKA ( Mo)
FLUKA (99mTc)
1.5e+14
N(t) = Activityg(t)/Activityatom
1.0e+14
5.0e+13
0.0
0
50
100
150
200
250
300
Time [hrs]
Target
100
Irradiation
99
Mo
Target’s weight:
41.6 g
99
Mo
99m
Tc
99m
T
Mo
Time [hrs]
Activity [Bq/cm3]
Activity [Ci/g]
Activity [Bq/cm3]
Activity [Ci/g]
Mo, T1/2
284.67
1.24x1010
0.033
1.08x1010
0.029
65.94 h
189.78
1.13x1010
0.030
9.72x109
0.026
94.89
8.24x109
0.022
6.79x109
0.018
47.44
5.13x109
0.014
3.80x109
0.010
99
99m
Tc, T1/2
6.0058 h
FLUKA; Photon induced activity
Induced (14.8 MeV) total activity (100Mo (n)99Mo)
12
(10 photons/s)
0.06
FLUKA hybrid (99Mo induced activity)
FLUKA hybrid, decay 1
FLUKA, decay 1
FLUKA hybrid, decay 2
FLUKA, decay 2
FLUKA hybrid, decay 3
FLUKA, decay 3
FLUKA hybrid, decay 4
FLUKA, decay 4
FLUKA (99mTc)
0.05
0.04
Activity [Ci/g]
99Mo
0.03
FLUKA (99Mo)
0.02
T1/2 = 65.94 h
99mTc
T1/2 = 6.0058 h
0.01
0.00
0
100
200
300
Time [hrs]
400
500
600
Target’s weight:
41.6 g
Photofission versus GDR transmutation
Photons
(16 MeV)
Fission yield per one photon [Nuclei/cm3]
(May be heavily underestimated by the FLUKA currently!)
Target
99Mo(42)
99Kr(36)
99Rb(37)
99Sr
238U
1.17x10-7
8.32x10-8
3.94x10-6
Errors (%)
20.2
20.5
2.1
(38)
β- yield
99Y(39)
99Zr(40)
99Nb(41)
99Mo(42)
1.83x10-5
6.47x10-5
3.46x10-5
6.15x10-6
1.28x10-4
1.1
0.9
0.7
2.3
Produced Isotope (reaction)
Yield [per one photon/cm3]
Error [%]
(n,γ) 101Mo#
3.65 x10-06
1.2
(γ,e+e-)atomic 100Mo
7.85 x10-05
0.4
(γ,n) 99 Mo
1.31 x10-02
0.03
(γ,2n) 98Mo
6.06 x10-03
0.1
#Secondary neutron capture
Fission in FLUKA
(geometry, target: 12 cm (d) x 6 cm (h))
Symmetric versus asymmetric fission
Jerry Montgomery
%
%
Rondo Jeffery
m
FLUKA photofission not updated yet
Photofission
238
U (12.5 MeV)
U(16 MeV)
235
U(12.5 MeV)
238
3
1e-2
235
U(16 MeV)
U(12.5 MeV)
234
U(16 MeV)
232
Th(12.5 MeV)
232
Th(16 MeV)
234
1e-3
1e-4
1e-5
Photofission
1e-6
1e-2
1e-7
3
Fission Yield per Photon [Nuclei/cm ]
Fission Yield per Photon [Nuclei/cm ]
1e-1
1e-8
1e-9
0
50
100
Atomic Mass (A)
150
200
250
1e-3
1e-4
1e-5
238
U (12.5 MeV)
U(16 MeV)
235
U(12.5 MeV)
1e-6
238
1e-7
235
U(16 MeV)
U(12.5 MeV)
234
U(16 MeV)
232
Th(12.5 MeV)
232
Th(16 MeV)
234
1e-8
1e-9
60
80
100
120
Atomic Mass (A)
140
160
FLUKA photofission not updated yet
99Mo production in photofission
Target
238
U
Errors (%)
235
U
Errors (%)
234
U
Errors (%)
232
Th
Errors (%)
β- yield*
Subcritical fission yield per one particle [nuclei/cm3]
May be heavily underestimated by FLUKA currently!
Photons
(16 MeV)
99
Mo(42)
99
Kr(36)
99
Rb(37)
99
Sr (38)
99
Y(39)
99
Zr(40)
99
Nb(41)
1.16x10-7
1.37x10-7
4.36x10-6
2.50x10-5
9.14x10-5
4.65x10-5
6.52x10-6
12.0
12.9
3.7
1.1
0.4
0.7
4.6
1.04x10-5
2.36x10-8
2.30x10-6
1.58 x10-4
1.70x10-3
2.65x10-3
2.36 x10-4
1.5
30.8
3.6
0.4
0.1
0.2
0.2
9.83x10-6
1.19x10-8
1.40x10-6
2.00x10-5
3.30x10-4
1.01x10-3
2.19x10-4
0.7
66.9
4.8
0.6
0.3
0.2
0.5
1.19x10-8
1.19x10-8
2.97x10-7
1.70x10-6
6.97x10-6
3.96x10-6
7.85x10-7
6.9
3.6
2.2
3.4
2.6
66.9
40.8
99
Mo(42)
1.74x10-4
4.75x10-3
1.58x10-3
1.37x10-5
99Mo production comparison
Target 0.12 m diameter and 0.06 m height
Thermal
neutrons
Fission (subcritical) yield per one neutron [nuclei/cm3]
Target
99Mo(42)
99Rb(37)
235U
7.01 x10-4
Errors (%)
1.2
GDR
99Sr
β- yield*
Total
(38)
99Y(39)
99Zr(40)
99Nb(41)
99Mo(42)
99Mo(42)
3.40 x10-6
0.00728
0.0854
0.139
0.0118
0.2435
0.244
17.6
0.5
0.2
0.3
0.5
Produced Isotope (reaction)
Yield [per one photon/cm3]
Error [%]
(n,γ) 101Mo#
6.88 x10-5
0.2
(γ,e+e-)atomic 100Mo
7.69 x10-4
0.0
(γ,n) 99 Mo
1.58 x10-2
0.0
(γ,2n) 98Mo
8.47 x10-3
0.1
(γ,3n) 97Mo
9.71 x10-4
0.0
(γ,4n) 96Mo
1.11 x10-3
0.1
(γ,5n) 95Mo
1.75 x10-3
0.1
Energy deposition in 99Mo
production
Internal
part of
container
Thermal neutrons (0.025 eV)
Average Energy
Error
Standard Deviation
GeV/particle
[%]
GeV/particle
Target
0.7330
0.32
0.0023
Internal part of the lead container
0.0131
0.23
3.0509x10-5
External part of the lead container
0.0036
0.29
1.0186 x10-5
GDR (0.0148 MeV)
Average Energy
Error
Standard Deviation
GeV/particle
[%]
GeV/particle
Target
0.01220
0.04
5.4589x10-6
Internal part of the lead container
0.0002
0.19
4.5671x10-6
External part of the lead container
1.29 x10-5
0.42
5.4807x10-8
235U
Target
100Mo
Target
GDR, photofission versus thermal neutrons
fission (subcritical); Energy deposition
Photofission versus thermal neutrons
fission (subcritical); Fluence
No protons
Waste management
79Se, 93
93Zr, 99
99Tc, 107
107Pd,
• Treatment of long lived isotopes: 79
126
126Sn, 129
129I and 135
135Cs; radio-toxic >1055 years
• GDR transmutation to short live isotopes
135Cs to 2.0648 years 134
134Cs
• 2.3 x1066 years half-life time of 135
136Cs (secondary neutron capture)
or 13.16 d 136
129I to 24.99 m 128
128I
• 1.57 x1077 years half-life time of 129
130I (secondary neutron capture)
or 12.36 h 130
Photons versus neutrons
100
129
I (,n) 128I
129
I(n,)130I
135
Cs(n,)136Cs
Cross Sections [barns]
10
1
0.1
0.01
0.001
1e-8
1e-7
1e-6
1e-5
1e-4
1e-3
1e-2
1e-1
Incident Energy [MeV]
http://www.nndc.bnl.gov
1e+0
1e+1
Long lived waste transmutation; Geometry
(target: 12 cm (d) x 15 cm (h) )
135Cs transmutation by GDR (15.01 MeV )
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 136Cs#
4.42 x10-03
0.6
(γ,e+e-)atomic 135Cs
1.45 x10-03
1.6
(γ,n) 134 Cs
2.21 x10-02
0.2
(γ,2n) 133Cs
2.81 x10-04
2.4
(γ,p) 134Xe
3.60 x10-06
14.2
#Secondary neutron capture
2.3 x106 years half-life time of
135Cs
2.0648 years 134Cs
or 13.16 d 136Cs (secondary
neutron capture)
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 136Cs#
3.52 x10-03
0.7
(γ,e+e-)atomic 135Cs
1.41 x10-03
2.0
(γ,n) 134 Cs
2.19 x10-02
0.2
(γ,2n) 133Cs
2.76 x10-04
4.1
(γ,p) 134Xe
2.20 x10-06
30.2
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 136Cs#
1.35 x10-04
3.1
(γ,e+e-)atomic 135Cs
1.67 x10-03
1.1
(γ,n) 134 Cs
2.22 x10-02
0.2
(γ,2n) 133Cs
2.76 x10-04
4.4
(γ,p) 134Xe
3.00 x10-06
23.6
129I transmutation by GDR (15.24 MeV )
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 130I#
9.22 x10-03
0.4
(γ,e+e-)atomic 129I
6.15 x10-03
0.4
(γ,n) 128I
2.88 x10-02
0.3
(γ,2n) 127I
9.88 x10-04
1.2
(γ,p)
128
Te
3.20 x10
-06
33.4
#Secondary neutron capture
1.57 x107 years half-life time
of 129I
24.99 m 128I
or 12.36 h 130I (secondary
neutron capture)
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 130I#
7.91 x10-03
0.8
(γ,e+e-)atomic 129I
6.17 x10-03
0.9
(γ,n) 128I
2.90 x10-02
0.2
(γ,2n) 127I
9.87 x10-04
1.3
(γ,p) 128Te
5.60 x10-06
26.2
Produced Isotope
(reaction)
Yield [per one
photon/cm3]
Error [%]
(n,γ) 130I#
1.08 x10-03
0.8
(γ,e+e-)atomic 129I
6.81 x10-03
0.5
(γ,n) 128I
2.88 x10-02
0.1
(γ,2n) 127I
1.00 x10-03
1.7
(γ,p) 128Te
2.80 x10-06
30.7
Long lived waste transmutation; fluence
Long lived waste transmutation; fluence
Long lived waste transmutation;
energy deposition
Summary and conclusion
• FLUKA simulations show that the production of the desired
isotopes via GDR (photon) are orders of magnitude higher
than the other isotopes, indicating this technique to be
promising method for artificial transmutations
• Applications
•
•
•
Production of medical and industrial isotopes
Transmutation of long lived isotopes to short lived
Induced transmutation & photofission as a source of neutrons
Comment: Currently γ beams have too low intensity for some applications. While it is
expected that the intensity will be increased sufficiently for a production of medical
isotopes, the total transmutation of nuclear waste requires intensities that will be
probably not possible to achieve in the near future.
Acknowledgement
•
•
•
•
•
•
Collaboration with Professor Chary Rangacharyulu
Access to FLUKA code
FLUKA developers and support group (especially
Francesco Cerutti)
V. Vlachoudis for FLAIR graphic interface with FLUKA
C. Cederstrand for technical support
Science and Engineering division (especially
Dean J. Kozinski and Vice-dean K. Schneider) for start up
funding and support