Monte Carlo simulations of artificial transmutation for medical isotope production, photofission and nuclear waste management Laser Electron Scatter Photons at Light Sources for Nuclear & Allied Research, April 23, 2010, CLS Barbara Szpunar Collaborative project Project initialized by professor Chary Rangacharyulu Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2 The FLUKA International Collaboration UPDATES UPDATES ON ON THE THE STATUS STATUS OF OF THE THE FLUKA FLUKA MONTE MONTE CARLO CARLO TRANSPORT TRANSPORT CODE CODE A. A. Ferrari, Ferrari, M.Lorenzo-Sentis, M.Lorenzo-Sentis, S. S. Roesler, Roesler, G. G. Smirnov, Smirnov, F.Sommerer, F.Sommerer, C.Theis C.Theis and and V.Vlachoudis, V.Vlachoudis, CERN, CERN, Geneva, Geneva, Switzerland Switzerland M. M. Carboni, Carboni, A. A. Mostacci, Mostacci, M. M. Pelliccioni Pelliccioni and and R. R. Villari, Villari, INFN, INFN, Frascati, Frascati, Italy Italy V. V. Anderson, Anderson, N. N. Elkhayari, Elkhayari, A. A. Empl, Empl, K. K. Lee, Lee, B. B. Mayes, Mayes, L. L. Pinsky Pinsky and and N. N. Zapp Zapp Physics Physics Department, Department, University University of of Houston, Houston, Houston, Houston, TX TX 77204-5005, 77204-5005, USA USA K. K. Parodi, Parodi, H. H. Paganetti Paganetti and and T. T. Bortfeld, Bortfeld, Massachusetts Massachusetts General General Hospital, Hospital, Department Department of of Radiation Radiation Oncology, Oncology, Boston, Boston, MA, MA, 02114 02114 USA USA G. G. Battistoni, Battistoni, M. M. Campanella, Campanella, F. F. Cerutti, Cerutti, P. P. Colleoni, Colleoni, E. E. Gadioli, Gadioli, M.V. M.V. Garzelli, Garzelli, M. M. Lanza, Lanza, INFN and Univ. of Milan, Italy S.Muraro, A. Pepe and P. Sala, S.Muraro, A. Pepe and P. Sala, INFN and Univ. of Milan, Italy T. T. N. N. Wilson. Wilson. NASA/JSC, NASA/JSC, Houston, Houston, TX, TX, 77058 77058 USA USA D. D. Alloni, Alloni, F. F. Ballarini, Ballarini, M. M. Liotta, Liotta, A. A. Mairani, Mairani, A. A. Ottolenghi, Ottolenghi, D. D. Scannicchio Scannicchio and and S. S. Trovati, Trovati, INFN INFN and and Univ. Univ. Pavia, Pavia, Italy Italy J. J. Ranft, Ranft, Siegen Siegen Univ., Univ., Germany Germany A. SLAC, USA USA A. Fasso’, Fasso’, SLAC, Content • Background on FLUKA simulation method • Photon induced artificial transmutation • • • medical isotope production photofission nuclear waste management • Summary and conclusions FLUKA http://www.fluka.org • • Main authors:A. Fassò, A. Ferrari, J. Ranft, P.R. Sala Contributing authors: G.Battistoni, F.Cerutti, T.Empl, M.V.Garzelli, M.Lantz, A. Mairani, V.Patera, S.Roesler, G. Smirnov, F.Sommerer, V.Vlachoudis • >2000 users • Developed and maintained under an INFN-CERN agreement Copyright 1989-2008 CERN and INFN FLUKA code • FLUKA (FLUktuierende KAskade), fully integrated Monte Carlo simulation package for the interaction and transport of particles and nuclei in matter • Well tested models • Optimized by comparing with experimental data • Fully analogue code or biased mode • Double precision used, 10-10 energy conservation • 60 particles modeled including polarized light • First Monte Carlo particle transport code with photonuclear interactions: MeV – TeV energy range FLUKA2008.3b version • Giant Dipole Resonance (GDR) cross sections, the library for energy range between 6 and 60 MeV (0.2 MeV) • The libraries professionally evaluated (e.g. IAEA ); corrected for consistency • Statistically selected evaporation or fission models • No fission for nuclei with Z less than 70 (65) • Not up-to-date photofission model; heavily underestimated for low energy photons Photonuclear reaction (GDR) E Typical nuclear excitation spectrum 77*A-1/3 [MeV] Energy / Width [MeV] 80 Energy Width 60 40 77*A-1/3 20 23*A-1/3 0 Excitation Energy 0 0 50 100 150 Atomic mass 200 250 Medical Isotopes (photons versus protons) 0.6 1e+5 100 0.5 1e+4 Cross Sections [barns] 1e+3 Cross Sections [barns] 99 Mo, (,n) Mo 100 99 100 Mo Mo (p,2n) 99m100 TcMo, (,n) 99m 193 192 Tc Ir (,n) Ir 193Mo (p,2n) Ir (,n) 192Ir 98 Mo(n,)99Mo 191 Ir(n,)192Ir 0.4 1e+2 1e+1 0.3 1e+0 0.2 1e-1 1e-2 0.1 1e-3 0.0 1e-4 5 1e-8 1e-7 10 1e-6 1e-5 15 1e-4 1e-3 20 1e-2 1e-1 251e+0 Incident Incident Energy Energy [MeV] [MeV] http://www.nndc.bnl.gov 1e+1 30 I: FLUKA hybrid simulations • Five runs (each 106 particles, GDR energy) •Energy deposition, equivalent dose •Fluence (n = Lparticle / Vtarget dn/dlnE): neutron, photon, proton •Residual nuclei (Rn- per particle) No time dependence Time dependence • Calculate induced activity for a given beam intensity (I) N (t ti ) R (1 e t / ) dN (t ti ) R (1 e t i / ) e ( t t i ) / dt R = I * Rnn tii – irradiation time τ – mean life ActivityNN(t) = N(t) Activityatom atom II: FLUKA induced activity simulations Time dependence • Set irradiation and cooling time, beam intensity • Perform five runs using FLUKA’s exact analytical implementation of Bateman equations for induced activity calculations • Total activity • Yield Photonuclear GDR interaction in natural Ir and 193Ir (target: 1cm (d) x 4 cm (h)) (CNS 2010) Natural Ir (37% of 191Ir and 63% of 193Ir) 192Ir, T1/2 = 73.83 d 193Ir target 193Ir Natural Ir, n reflected by Be target Produced Produced Isotope Isotope (reaction) (reaction) Yield Yield [per [per one one 3 photon/cm ] 3] photon/cm Error Error [%] [%] (n,γ) 194Ir# (n,γ) 194Ir# (γ,e+e-)atomic 193Ir (γ,e+e-)atomic 193Ir (γ,n) 192Ir (γ,n) or (n,γ)* 192Ir 191 (γ,2n) (γ,2n) 191Ir Ir Pb container 1.33x10-4 1.23x10-4 1.28x10-3 1.26x10-3 2.04x10-2-2 1.28x10 -4 9.16x10 8.58x10-4 0.2 2.4 0.1 1.6 0.04 0.5 0.1 2 190 (γ,p) 192 Os (γ,3n) Ir -8 1.97x10 7.6x10-3 42 0.3 #Secondary neutron capture Yield [per one photon/cm3] Yield [per one photon/cm3] Error [%] (n,γ) 194Ir# 3.19x10-4 1.9 (γ,e+e-)atomic 193Ir 1.29x10-3 0.9 (γ,n) or (n,γ)* 192Ir 1.31x10-2 0.4 (γ,2n) 191Ir 9.06x10-4 1.7 (γ,3n) 190Ir 7.51x10-3 0.3 (γ,p) 190Os 2.0x10-7 99 (37% of 191Ir and 63% of 193Ir) * 191Ir Produced Isotope (reaction) Produced Isotope (reaction) Error [%] (Reaction) Produced Isotope Yield [per one photon/cm3] Error [%] (n,γ) 194Ir# 3.52x10-4 1.7 1 (γ,e+e-)atomic 193Ir 1.29x10-3 0.7 1.32x10-2 0.3 (γ,n) or (n,γ)* 192Ir 1.33x10-2 0.2 (γ,2n) 191Ir 8.87x10-4 0.4 (γ,2n) 191Ir 8.92x10-4 1.1 (γ,3n) 190Ir 7.56x10-3 0.9 (γ,3n) 190Ir 7.55x10-3 0.3 (n,γ) 194Ir# 3.44x10-4 1.2 (γ,e+e-)atomic 193Ir 1.29x10-3 (γ,n) or (n,γ)* 192Ir 100Mo transmutation; FLUKA; Proton versus photon 100 Geometry (target: 1.2 cm (d) x 3.6 cm (h)), energy deposition (p,2n) (γ,n) 14.8 MeV 22 MeV Natural Mo: 9.63% 100Mo, 24.13% 98Mo FLUKA; Proton versus photon 100Mo transmutation; Equivalent dose (p,2n) (γ,n) Wn: 10 (2-20 MeV), 5 (above) and 20 (below this energy) FLUKA; Proton versus photon 100Mo transmutation Produced Isotope (reaction) Yield Yield[per [perone one 3 ] 3] proton/cm photon/cm 100Mo target Natural Mo target Becontainer container Pb Error Error[%] [%] Produced Isotope (reaction) 100Tc (p,n) 101 (n,γ) Mo# -4 5.44x10 4.29 x10-6 2.9 0.9 (n,γ) 101Mo# 3.65 x10-6 1.2 10.4 (γ,e+e-)atomic 100Mo 7.85 x10-5 0.4 0.01 1.6 (γ,n) 99 Mo 1.31 x10-2 0.03 (γ,2n) 98Mo 6.06 x10-3 0.1 (γ,3n) 97Mo 9.27 x10-5 0.6 (γ,4n) 96Mo 1.04 x10-4 0.3 99Tc +e-) 100Mo (γ,e(p,2n) atomic -3 4.14x10 6.32 x10-5 (~ 2x10-3 99mTc) (γ,n)&(n,γ)# (p,3n) 98Tc99 Mo -4 -3 1.27 x10 7.23x10 98Mo (γ,2n)&(γ,γ)* 101 (n,γ) Mo# -4 7.07 x10 -6 1.00x10 0.2 77.5 (γ,3n)&(γ,n)* 97Mo 4.71 x10-3 0.1 (p,p) 100Mo (γ,4n)&(γ,2n)* 96Mo 2.09x10-4 2.15 x10-3 1.1 0.1 (p,n&p) 99Mo95 (γ,5n)&(γ,3n)* Mo 9.42x10-h5-3 3.18 x10 4.8 0.1 #Secondary neutron capture; * 98Mo Yield [per one photon/cm3] 100Mo target Pb container Error [%] Natural Mo: 9.63% 100Mo, 24.13% 98Mo FLUKA hybrid versus FLUKA calculations Photonuclear (14.8 MeV) transmutation ( (1012 photons/s) 100 99 Mo (n) Mo) NRU produces (in reactor) per year : ~3.65 x 1022 99 Mo atoms ~24 g Mo with 25% 99Mo Burns 10% of 10 kg HEU (90%, Al) uranium Waste: 9kg HEU 4.5e+14 4.0e+14 3.5e+14 Number of atoms per g 6 x 1021 atoms in 1g of Mo 3.0e+14 2.5e+14 2.0e+14 99 Hybrid FLUKA ( Mo) 99 FLUKA ( Mo) FLUKA (99mTc) 1.5e+14 N(t) = Activityg(t)/Activityatom 1.0e+14 5.0e+13 0.0 0 50 100 150 200 250 300 Time [hrs] Target 100 Irradiation 99 Mo Target’s weight: 41.6 g 99 Mo 99m Tc 99m T Mo Time [hrs] Activity [Bq/cm3] Activity [Ci/g] Activity [Bq/cm3] Activity [Ci/g] Mo, T1/2 284.67 1.24x1010 0.033 1.08x1010 0.029 65.94 h 189.78 1.13x1010 0.030 9.72x109 0.026 94.89 8.24x109 0.022 6.79x109 0.018 47.44 5.13x109 0.014 3.80x109 0.010 99 99m Tc, T1/2 6.0058 h FLUKA; Photon induced activity Induced (14.8 MeV) total activity (100Mo (n)99Mo) 12 (10 photons/s) 0.06 FLUKA hybrid (99Mo induced activity) FLUKA hybrid, decay 1 FLUKA, decay 1 FLUKA hybrid, decay 2 FLUKA, decay 2 FLUKA hybrid, decay 3 FLUKA, decay 3 FLUKA hybrid, decay 4 FLUKA, decay 4 FLUKA (99mTc) 0.05 0.04 Activity [Ci/g] 99Mo 0.03 FLUKA (99Mo) 0.02 T1/2 = 65.94 h 99mTc T1/2 = 6.0058 h 0.01 0.00 0 100 200 300 Time [hrs] 400 500 600 Target’s weight: 41.6 g Photofission versus GDR transmutation Photons (16 MeV) Fission yield per one photon [Nuclei/cm3] (May be heavily underestimated by the FLUKA currently!) Target 99Mo(42) 99Kr(36) 99Rb(37) 99Sr 238U 1.17x10-7 8.32x10-8 3.94x10-6 Errors (%) 20.2 20.5 2.1 (38) β- yield 99Y(39) 99Zr(40) 99Nb(41) 99Mo(42) 1.83x10-5 6.47x10-5 3.46x10-5 6.15x10-6 1.28x10-4 1.1 0.9 0.7 2.3 Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 101Mo# 3.65 x10-06 1.2 (γ,e+e-)atomic 100Mo 7.85 x10-05 0.4 (γ,n) 99 Mo 1.31 x10-02 0.03 (γ,2n) 98Mo 6.06 x10-03 0.1 #Secondary neutron capture Fission in FLUKA (geometry, target: 12 cm (d) x 6 cm (h)) Symmetric versus asymmetric fission Jerry Montgomery % % Rondo Jeffery m FLUKA photofission not updated yet Photofission 238 U (12.5 MeV) U(16 MeV) 235 U(12.5 MeV) 238 3 1e-2 235 U(16 MeV) U(12.5 MeV) 234 U(16 MeV) 232 Th(12.5 MeV) 232 Th(16 MeV) 234 1e-3 1e-4 1e-5 Photofission 1e-6 1e-2 1e-7 3 Fission Yield per Photon [Nuclei/cm ] Fission Yield per Photon [Nuclei/cm ] 1e-1 1e-8 1e-9 0 50 100 Atomic Mass (A) 150 200 250 1e-3 1e-4 1e-5 238 U (12.5 MeV) U(16 MeV) 235 U(12.5 MeV) 1e-6 238 1e-7 235 U(16 MeV) U(12.5 MeV) 234 U(16 MeV) 232 Th(12.5 MeV) 232 Th(16 MeV) 234 1e-8 1e-9 60 80 100 120 Atomic Mass (A) 140 160 FLUKA photofission not updated yet 99Mo production in photofission Target 238 U Errors (%) 235 U Errors (%) 234 U Errors (%) 232 Th Errors (%) β- yield* Subcritical fission yield per one particle [nuclei/cm3] May be heavily underestimated by FLUKA currently! Photons (16 MeV) 99 Mo(42) 99 Kr(36) 99 Rb(37) 99 Sr (38) 99 Y(39) 99 Zr(40) 99 Nb(41) 1.16x10-7 1.37x10-7 4.36x10-6 2.50x10-5 9.14x10-5 4.65x10-5 6.52x10-6 12.0 12.9 3.7 1.1 0.4 0.7 4.6 1.04x10-5 2.36x10-8 2.30x10-6 1.58 x10-4 1.70x10-3 2.65x10-3 2.36 x10-4 1.5 30.8 3.6 0.4 0.1 0.2 0.2 9.83x10-6 1.19x10-8 1.40x10-6 2.00x10-5 3.30x10-4 1.01x10-3 2.19x10-4 0.7 66.9 4.8 0.6 0.3 0.2 0.5 1.19x10-8 1.19x10-8 2.97x10-7 1.70x10-6 6.97x10-6 3.96x10-6 7.85x10-7 6.9 3.6 2.2 3.4 2.6 66.9 40.8 99 Mo(42) 1.74x10-4 4.75x10-3 1.58x10-3 1.37x10-5 99Mo production comparison Target 0.12 m diameter and 0.06 m height Thermal neutrons Fission (subcritical) yield per one neutron [nuclei/cm3] Target 99Mo(42) 99Rb(37) 235U 7.01 x10-4 Errors (%) 1.2 GDR 99Sr β- yield* Total (38) 99Y(39) 99Zr(40) 99Nb(41) 99Mo(42) 99Mo(42) 3.40 x10-6 0.00728 0.0854 0.139 0.0118 0.2435 0.244 17.6 0.5 0.2 0.3 0.5 Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 101Mo# 6.88 x10-5 0.2 (γ,e+e-)atomic 100Mo 7.69 x10-4 0.0 (γ,n) 99 Mo 1.58 x10-2 0.0 (γ,2n) 98Mo 8.47 x10-3 0.1 (γ,3n) 97Mo 9.71 x10-4 0.0 (γ,4n) 96Mo 1.11 x10-3 0.1 (γ,5n) 95Mo 1.75 x10-3 0.1 Energy deposition in 99Mo production Internal part of container Thermal neutrons (0.025 eV) Average Energy Error Standard Deviation GeV/particle [%] GeV/particle Target 0.7330 0.32 0.0023 Internal part of the lead container 0.0131 0.23 3.0509x10-5 External part of the lead container 0.0036 0.29 1.0186 x10-5 GDR (0.0148 MeV) Average Energy Error Standard Deviation GeV/particle [%] GeV/particle Target 0.01220 0.04 5.4589x10-6 Internal part of the lead container 0.0002 0.19 4.5671x10-6 External part of the lead container 1.29 x10-5 0.42 5.4807x10-8 235U Target 100Mo Target GDR, photofission versus thermal neutrons fission (subcritical); Energy deposition Photofission versus thermal neutrons fission (subcritical); Fluence No protons Waste management 79Se, 93 93Zr, 99 99Tc, 107 107Pd, • Treatment of long lived isotopes: 79 126 126Sn, 129 129I and 135 135Cs; radio-toxic >1055 years • GDR transmutation to short live isotopes 135Cs to 2.0648 years 134 134Cs • 2.3 x1066 years half-life time of 135 136Cs (secondary neutron capture) or 13.16 d 136 129I to 24.99 m 128 128I • 1.57 x1077 years half-life time of 129 130I (secondary neutron capture) or 12.36 h 130 Photons versus neutrons 100 129 I (,n) 128I 129 I(n,)130I 135 Cs(n,)136Cs Cross Sections [barns] 10 1 0.1 0.01 0.001 1e-8 1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 Incident Energy [MeV] http://www.nndc.bnl.gov 1e+0 1e+1 Long lived waste transmutation; Geometry (target: 12 cm (d) x 15 cm (h) ) 135Cs transmutation by GDR (15.01 MeV ) Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 136Cs# 4.42 x10-03 0.6 (γ,e+e-)atomic 135Cs 1.45 x10-03 1.6 (γ,n) 134 Cs 2.21 x10-02 0.2 (γ,2n) 133Cs 2.81 x10-04 2.4 (γ,p) 134Xe 3.60 x10-06 14.2 #Secondary neutron capture 2.3 x106 years half-life time of 135Cs 2.0648 years 134Cs or 13.16 d 136Cs (secondary neutron capture) Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 136Cs# 3.52 x10-03 0.7 (γ,e+e-)atomic 135Cs 1.41 x10-03 2.0 (γ,n) 134 Cs 2.19 x10-02 0.2 (γ,2n) 133Cs 2.76 x10-04 4.1 (γ,p) 134Xe 2.20 x10-06 30.2 Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 136Cs# 1.35 x10-04 3.1 (γ,e+e-)atomic 135Cs 1.67 x10-03 1.1 (γ,n) 134 Cs 2.22 x10-02 0.2 (γ,2n) 133Cs 2.76 x10-04 4.4 (γ,p) 134Xe 3.00 x10-06 23.6 129I transmutation by GDR (15.24 MeV ) Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 130I# 9.22 x10-03 0.4 (γ,e+e-)atomic 129I 6.15 x10-03 0.4 (γ,n) 128I 2.88 x10-02 0.3 (γ,2n) 127I 9.88 x10-04 1.2 (γ,p) 128 Te 3.20 x10 -06 33.4 #Secondary neutron capture 1.57 x107 years half-life time of 129I 24.99 m 128I or 12.36 h 130I (secondary neutron capture) Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 130I# 7.91 x10-03 0.8 (γ,e+e-)atomic 129I 6.17 x10-03 0.9 (γ,n) 128I 2.90 x10-02 0.2 (γ,2n) 127I 9.87 x10-04 1.3 (γ,p) 128Te 5.60 x10-06 26.2 Produced Isotope (reaction) Yield [per one photon/cm3] Error [%] (n,γ) 130I# 1.08 x10-03 0.8 (γ,e+e-)atomic 129I 6.81 x10-03 0.5 (γ,n) 128I 2.88 x10-02 0.1 (γ,2n) 127I 1.00 x10-03 1.7 (γ,p) 128Te 2.80 x10-06 30.7 Long lived waste transmutation; fluence Long lived waste transmutation; fluence Long lived waste transmutation; energy deposition Summary and conclusion • FLUKA simulations show that the production of the desired isotopes via GDR (photon) are orders of magnitude higher than the other isotopes, indicating this technique to be promising method for artificial transmutations • Applications • • • Production of medical and industrial isotopes Transmutation of long lived isotopes to short lived Induced transmutation & photofission as a source of neutrons Comment: Currently γ beams have too low intensity for some applications. While it is expected that the intensity will be increased sufficiently for a production of medical isotopes, the total transmutation of nuclear waste requires intensities that will be probably not possible to achieve in the near future. Acknowledgement • • • • • • Collaboration with Professor Chary Rangacharyulu Access to FLUKA code FLUKA developers and support group (especially Francesco Cerutti) V. Vlachoudis for FLAIR graphic interface with FLUKA C. Cederstrand for technical support Science and Engineering division (especially Dean J. Kozinski and Vice-dean K. Schneider) for start up funding and support
© Copyright 2026 Paperzz