M408S Quiz 4 Solutions 1. Sep 22, 2016 (5 pts)πFirst make a substitution and then use integration by parts to evaluate ´ 2 cos t 1 sin(2t)dt. You may need a double angle formula. 2 0 e Solution 1. 1 2 1 2 ˆ = ˆ π 2 ecos t sin(2t)dt 0 ˆ π 2 ecos t 2 sin(t) cos(t)dt 0 π 2 = ecos t sin(t) cos(t)dt 0 ˆ π 2 = ecos t cos(t) sin(t)dt = (let u = cost, du = −sintdt) ˆ 0 eu u(−1)du 0 1 (change variable name for integration by parts) ˆ 1 ex xdx = 0 = (let u = x, dv = ex dx, then du = 1dx, v = ex ) ˆ 1 x=1 xex |x=0 − 1 · ex dx = 1e1 − 0e0 − ex |x=0 0 Solution 2. x=1 = e − 0 − (e − 1) = 1 Use indenite integral: with the same substitution above, 1 2 ˆ ˆ ecos t sin(2t)dt ecos t cos(t) sin(t)dt = ˆ eu u(−1)du ˆ = − ex xdx ˆ = −(xex − 1ex dx) = = −(xex − ex ) (plug back x = u = cost cost = −(coste = e cost −e (1 − cost) cost ) after you nd the antiderivative) M408S Quiz 4 Solutions Sep 22, 2016 t= π Then plug in the bounds: ecost (1 − cost)|t=02 = e0 (1 − 0) − e1 (1 − 1) = 1. Solution 3. Use integration by parts after using sin(2t) = 2sintcost: I 1 2 ˆ = ˆ ecos t sin(2t)dt ecos t cos(t) sin(t)dt = Let u = cost, dv = ecost sintdt. Because you can observe (ecost )0 = ecost (−sint). Then du = −sintdt, v = −ecost . ˆ = udv ˆ = uv − vdu ˆ = cost(−ecost ) − (−ecost )(−sint)dt ˆ cost = −coste − ecost sintdt (do substitution u = cost, then sintdt = −du) ˆ cost = −coste − eu (−1)du = −costecost + eu = −costecost + ecost Then plug in the bounds same as in Solution 2. 2. ´ (5 pts) Compute tan3 xdx. Given the formula: * 1 point bonus: compute Solution 1. ´ ´ tanxdx = −ln(|cosx|) + C = ln(|secx|) + C. ´ tan5 xdx. It will reduce to the case of tan3 xdx. ˆ tan3 xdx ˆ tan2 xtanxdx = ˆ (sec2 x − 1)tanxdx ˆ ˆ = sec2 xtanxdx − tanxdx = (do substitution u = tanx, then du = sec2 xdx) ˆ = udu − (−ln|cosx|) = u2 + ln|cosx| 2 M408S Quiz 4 Solutions = or : Solution 2. = Sep 22, 2016 tan2 x + ln|cosx| + C 2 tan2 x − ln|secx| + C 2 Similar as above, ˆ tan3 xdx ˆ ˆ = ˆ sec2 xtanxdx − = tanxdx ˆ secx · secxtanxdx − tanxdx (do substitution u = secx, then du = tanxsecxdx) ˆ = udu − (−ln|cosx|) = sec2 x + ln|cosx| + C 2 The solution is same as tan2 x + ln|cosx| + C because tan2 x and sec2 x dier by a constant ( 21 ). sinx Note. You may have lots of other ways to do this problem using tanx = cosx 1 and secx = cosx . Bonus. One of the solutions is: 2 2 2 ˆ tan5 xdx ˆ tan3 x(sec2 x − 1)dx ˆ ˆ = tan3 xsec2 xdx − tan3 xdx = (observe that we already have ˆ tan3 dx from the rst part) (do substitution u = tanx, du = sec2 xdx) ˆ tan2 x = u3 du − ( + ln|cosx|) 2 tan4 x tan2 x = − − ln|cosx| + C 4 2 You can also set tan5 x = tanx(sec2 x − 1)2 = tanx(sec4 x ´− 2sec2 x + 1) = sec4 xtanx − 2sec2 xtanx + tanx and use U-substitution for sec4 xtanx and ´ 4 sec2 xtanx. You end up with sec4 x − tan2 x − ln|cosx| + C , which is equivalent to the above solution (by plugging in sec2 x = tan2 x + 1).
© Copyright 2026 Paperzz