Section 6 – 1: Basic Exponent Rules Selected Worked Homework Problems The Product Rule (AxC y D )(Bx E y F ) = A • B• x C +E • y D+F Use the product rule to simplify each expression. 1. ( x )( x ) ! 2 5 2. Add the exponents of the x bases = x2+ 5 ( x )( x ) ! 3 3. ( 2x1 ) ( 3x 5 ) ! 2 Multiply the coeffcients. Add the exponents of the x bases Add the exponents of the x bases = x 3+ 2 ! = x7 ! = 2 • 3• x1+ 5 = x5 = 6x 6 ! 4. 7. ! ( 5y )( 3y ) ! 5 3 5. ( 4y )( 2y ) ! 4 2 6. ( 4x )( −5x ) 3 6 Multiply the coeffcients. Add the exponents of the y bases ! = 5 • 3• y 5+ 3 Multiply the coeffcients. Add the exponents of the y bases ! = 4 • 2• y4 + 2 Multiply the coeffcients. Add the exponents of the x base = 15y 8 = 8y 6 = −20x 9 ( 3y )(1y ) ! 5 4 Multiply the coeffcients. Add the exponents of the y base = 3•1• y 5 + 4 8. ! = 3y 9 Chapter 6 ( 3y )( y ) ! 1 Multiply the coeffcients. Add the exponents of the x base = 3•1• y1+ 8 9. ( 2x 3 ) ( 4x 2 ) 8 ! = 3y 9 ! = 4 • −5 • x 3+ 6 Section 6 – 1 HW WKD Multiply the coeffcients. Add the exponents of the x base = 2 • 4 • x 3+ 2 = 8x 5 ! © 2016 Eitel ( )( ( )( ) ) ( 2y )( 3y ) ! 10. 2y 4 4x 5 ! 11. 2y 4 1x 2 y 3 ! 12. Multiply the coeffcients. There are no common bases List the variable bases in alphabetical order Multiply the coeffcients. Add the exponents of the y bases List the variable bases in alphabetical order ! Multiply the coeffcients. Add the exponents of the y bases List the variable bases in alphabetical order = 2 •1• x 2 y 4+ 3 = 2 • 3• y 5+2 = 2x 2 y 7 = 6y 7 ! = 2 • 4 • x 5y 4 = 8x 5 y 4 (1x y )( −8y ) ! 2 5 13. 4 14. ( 5y )( 4y ) ! 4 5 15. Multiply the coeffcients. Multiply the coeffcients. Add the exponents of the x bases Add the exponents of the x bases List the variable bases in alphabetical order ! List the variable bases in alphabetical order ! 5 2 (−1x 2 y 2 )(1x 4 y 3) Multiply the coeffcients. Add the exponents of the x bases Add the exponents of the y bases List the variable bases in alphabetical order = 1• −8 • x 2 y 5+4 = 5 • 4 • y 4+5 = −1•1• x 2+4 y 2+3 = −8x 2 y 9 = 20y 9 = −x 6 y 5 ( )( ) ( )( ) ( x1y1)( x1y1) 16. −x 5 y 3 −x 4 y 5 ! 17. −3x 4 y 3 −3x 3 y 6 ! 18. Multiply the coeffcients. Add the exponents of the x bases Add the exponents of the y bases ! List the variable bases in alphabetical order Multiply the coeffcients. Add the exponents of the x bases Add the exponents of the y bases ! List the variable bases in alphabetical order Each variable has an exponent of 1. = −1• −1• x 5+4 y 3+5 = −3• −3• x 4+3 y 3+6 = x1+1 • y1+1 = x 9 y8 = 9x 7 y 9 = x 2 y2 Chapter 6 ! Section 6 – 1 HW WKD Add the exponents of the x bases Add the exponents of the y bases ! © 2016 Eitel 19. ( x1y 3)( x1y 2 ) ! 20. ( x4 y)( x3 y) Each x variable has an exponent of 1. Add the exponents of the x bases Add the exponents ! of the y bases Each y variable has an exponent of 1. Add the exponents of the x bases Add the exponents of the y bases = x1+ 1 • y 3+ 2 = x 4 + 3 • y1+ 1 = x2y5 = x7y2 The Power Rule (A1x B y C ) D = A1•D x B•D y C•D Use the power rule to simplify each expression. 21. (4 x y ) 3 4 2 1 ! 22. Multiply each exponent inside by the exponent outside the parentheses ! ( 2x y ) ! 3 4 3 23. Multiply each exponent inside by the exponent outside the parentheses ! ( 3xy ) ! 2 3 Multiply each exponent inside by the exponent outside the parentheses = 31•32x1 •2 y 2 •2 = 42 x 3•2 = 23 x y 4•2 = 16x 6 y 8 Chapter 6 3• 3 4• 3 = 33 x 2 y 4 y = 8x 9 y12 ! Section 6 – 1 HW WKD = 27x 2 y 6 ! © 2016 Eitel 24. (x y ) ! 3 2 3 25. Multiply each exponent inside by the exponent outside the parentheses = x 3 • 3 • y2 • 3 ( 5xy ) ! 4 2 26. 4 3 ! Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. (4 x y ) (3 x y ) Multiply each exponent inside by Multiply each exponent inside by 1 1 4 2 ! ( 3x y ) 1 the exponent outside the parentheses ! 4 1 3 the exponent outside the parentheses = x 9 y6 = 5 2 • x1•2 • y 4 •2 = 31•3 • x 4 • 3 • y1 • 3 = 33 • x12 • y 3 = 25x 2 y 8 27. ( −3xy ) 4 2 ! 28. = 27x12 y 3 ( 6x y ) 2 4 2 ! 29. ( 2x y ) 3 4 Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. ( −3 x y ) (6 x y ) (2 x y ) Multiply each exponent inside by the exponent outside the parentheses Multiply each exponent inside by the exponent outside the parentheses Multiply each exponent inside by the exponent outside the parentheses 1 1 4 2 1 ! 2 4 2 1 1 3 4 ! = (−3)1•2 • x1i2 • y 4i2 = 61•2 • x 2 •2 • y 4 •2 = 21•4 • x1i4 • y 3i4 = (−3)2 • x 2 • y 8 = 62 • x 4 • y8 = 2 4 • x 4 • y12 = 9x 2 y 8 = 36x 4 y 8 = 16x 4 y12 Chapter 6 ! Section 6 – 1 HW WKD ! © 2016 Eitel ( 9x y ) 3 3 2 30. ! ( 2x y ) ! 4 31. 3 32. ( 2xy ) 5 2 Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. (9 x y ) (2 x y ) (2 x y ) Multiply each exponent inside by Multiply each exponent inside by Multiply each exponent inside by 3 3 2 1 4 1 3 1 ! the exponent outside the parentheses 1 1 5 2 the exponent outside the parentheses ! the exponent outside the parentheses = 91•2 • x 3 •2 • y 3•2 = 21•3 • x 4i3 • y1i3 = 21•2 • x1i2 • y 5i2 = 92 • x 6 • y6 = 2 3 • x12 • y 3 = 2 2 • x 2 • y10 = 81x 6 y 6 = 8x12 y 3 = 4x 2 y10 ( −x y ) 34. (10x 2 y 4 ) ! 35. Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. Place a 1 above each base without an exponent. ( −1 x y ) (10 x y ) (8 x y ) Multiply each exponent inside by the exponent outside the parentheses Multiply each exponent inside by the exponent outside the parentheses Multiply each exponent inside by the exponent outside the parentheses 2 33. 1 3 2 ! 2 1 3 1 ! 2 4 2 ( 8xy ) 2 2 ! 1 1 2 2 ! = (−1)1•3 • x 2i3 • y1i3 = 101•2 • x 2i2 • y 2i2 = 81•2 • x1i2 • y 2i2 = (−1)3 • x 6 • y 3 = 10 2 • x 4 • y 4 = 82 • x 2 • y4 = −x 6 y 3 = 100x 4 y 4 = 64x 2 y 4 Chapter 6 ! Section 6 – 1 HW WKD ! © 2016 Eitel ( −2x y )3 ! 36. 37. Place a 1 above each base without an exponent. 1 1 1 3 Multiply each exponent inside by = (−2) • x • y 3 3 2 38. ! 3 4 4 Place a 1 above each base without an exponent. (x y ) Multiply each exponent inside by Multiply each exponent inside by 5 1 2 3 4 4 the exponent outside the parentheses ! the exponent outside the parentheses = 7 2 • x10 • y 2 3 (x y ) (7 x y ) 1 = (−2)1•3 • x1i3 • y1i3 5 Place a 1 above each base without an exponent. ( −2 x y ) the exponent outside the parentheses ( 7x y ) ! = x12 y16 = 49x10 y 2 = −8x 3 y 3 ! The Quotient Rule If T > B If B > T top exponent > bottom exponent bottom exponent > top exponent x T x T −B = 1 xB xT 1 = B−T B x x Use the Quotient Rule to simplify each expression: 41. 2x 3 y 6x 2 y 2 ! 42. 2 1 reduces to 6 3 3 x x reduces to 2 x 1 1 y 1 reduces to 2 y y = 1• x •1 3•1• y = x 3y Chapter 6 10xy 2 15x 3 y ! 43. 14 7 reduces to 6 3 1 x 1 reduces to 2 3 x x 1 y 1 reduces to 1 y 1 10 2 reduces to 15 3 x 1 reduces to 2 3 x x 2 y y reduces to 1 y 1 ! ! = 2 •1• y 3• x 2 •1 = 2y 3x 2 14xy 6x 3 y !! ! Section 6 – 1 HW WKD ! = 7 •1•1 3• x 2 •1 = 7 3x 2 ! © 2016 Eitel 44. 3x 6 y 2 9x 2 y 6 ! 45. −12x 7 y 3 18x 9 y 2 ! 46. −12 −2 reduces to 18 3 7 x 1 reduces to 2 9 x x 3 y y reduces to 2 y 1 3 1 reduces to 9 3 6 x x4 reduces to x2 1 2 y 1 reduces to 4 6 y y ! 1• x 4 •1 = 3•1• y 4 −2 •1• y = 3• x 2 •1 x4 = 4 3y = ! 4xy 2 10xy 8 4 2 reduces to 10 5 1 x 1 reduces to 1 x 1 2 y 1 reduces to 6 8 y y ! −2y 3x 2 = 2 •1•1 5 •1• y 6 = 2 5y 5 ! 2 47. 4 x y 6xy 4 ! 48. 1 1 reduces to 6 6 2 x x reduces to 1 x 1 4 y 1 reduces to 4 y 1 −6x 3 y 2 49. 6x 3 y 8 6xy 2 9xy 2 ! −6 −1 reduces to 6 1 3 x 1 reduces to 3 x 1 2 y 1 reduces to 6 8 y y 6 2 reduces to 9 3 1 x 1 reduces to 1 x 1 2 y 1 reduces to 1 y 1 ! ! = 1• x •1 6 •1•1 = 2 •1•1 3•1•1 = −1•1•1 1•1• y 6 = x 6 = 2 3 = −1 y6 Chapter 6 ! Section 6 – 1 HW WKD ! © 2016 Eitel Power Rule, Product Rule, Quotient Rule Simplify.! ! ( 3x y ) ( 2x y ) ! 3 3 57. 2 58. ! ! ( 4x y )( 2x y ) ! 2 3 4 60. ! ! ( 6x y ) ( x y ) 2 3 3 3 ! Power Rule Power Rule ( 3 x y )( 2x y ) ( 3 x y )( 2x y ) ( 27x y )( 2x y ) 1i3 3 1i 3 3i3 ( 4x y )( 2 x y ) ( 4x y )( 2 x y ) ( 4x y )( 8x y ) 2 1 3 9 2 1 3 9 2 1 4 1 1i3 4 1 3 4 1 1i 3 3 6 3 y = 4•8• x 6 3 64. x10 1i 3 6 2 3 9 6 2 3 9 3i3 = 36 •1• x 6+3 y 2+9 = 36x 9 y11 ( 3x )( 2x ) ! x = 10 x x8 = 10 x 3 2 3 68. 9x 9 x 9 y8 Power Rule for the top (x = 3i 2 i x 3+6 = 9x 9 6x 9 = 9 9x 2x 9 = 9 3x ! Quotent Rule ! 1 = 10−8 x (x y ) 6 Product Rule 5+3 3•3 2•3 y ) 9 8 x y x 9 y6 = 9 8 x y Quotent Rule Quotent Rule 2 = 3 1 x2 x 9−9 = 8−6 y = Chapter 6 3i2 1i2 Product Rule 1+6 y 3 Product Rule = 4+3 = 32x 7 y 7 ( x )( x ) ! 63. 2 Product Rule 9+1 = 54x 5 y10 5 1i2 ! Product Rule = 27 • 2 • x ( 6 x y )( x y ) ( 6 x y )( x y ) ( 36x y )( x y ) 2i3 ! 3+2 Power Rule ! Section 6 – 1 HW WKD ! 1 y2 © 2016 Eitel 70. 4x 6 y 4 ( x y) 3 2 ! 72. 4x y ( x 3•2 y1•2 = 4x 6 y 4 x 6 y2 2 3 2 Power Rule for both factors 4 = 3 2 Power Rule for the bottom 6 ( 2x y ) ( 2x y ) (21i3 x 2•3 y1•3 ) (21i2 x 2•2 y 3•2 ) ) = 8x 6 y 3 4x 4 y 6 ! Quotent Rule ! Quotent Rule 4x 9−9 y 4−2 1 = 8 i x 6−4 4 i y 6−3 4y 2 = = 4y 2 1 = 2x 2 y3 = Chapter 6 ! ! Section 6 – 1 HW WKD ! © 2016 Eitel
© Copyright 2026 Paperzz