Booklet - Stonelaw High School

Education Resources
Polynomials
Higher Mathematics Supplementary Resources
Section A
This section is designed to provide examples which develop routine skills necessary
for completion of this section.
R1
I can solve cubic equations.
1.
Style one
(a)
Style 2
Higher Mathematics – Polynomials
(b)
Style 2
(c)
Style 2
Page 1
R2
Approximate roots.
1.
Style one
(a)
Style 2
(b)
Style 2
SLC Education Resources - Duncanrig Secondary School
(c)
Style 2
Page 2
Section B
This section is designed to provide examples which develop Course Assessment
level skills
NR1
I can factorise a polynomial expression using the factor theorem.
1.
Show that π‘₯ = βˆ’4 is a root of π‘₯ 3 + 8π‘₯ 2 + 11π‘₯ βˆ’ 20 = 0.
Hence factorise π‘₯ 3 + 8π‘₯ 2 + 11π‘₯ βˆ’ 20 fully.
2.
3.
4.
5.
(a)
Show that (π‘₯ + 2) is a factor of 𝑓(π‘₯) = 2π‘₯ 3 + 3π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6.
(b)
Hence factorise 𝑓(π‘₯) fully.
(a)
Show that (π‘₯ + 1) is a factor of 𝑓(π‘₯) = 2π‘₯ 3 βˆ’ 3π‘₯ 2 βˆ’ 3π‘₯ + 2.
(b)
Hence factorise 𝑓(π‘₯) fully.
Show that (π‘₯ βˆ’ 2) is a factor of 𝑓(π‘₯) = π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8.
(a)
Factorise π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8 fully
(b)
Solve π‘₯ 3 + 2π‘₯ = 5π‘₯ 2 – 8
Factorise fully
a)
b)
c)
d)
e)
f)
π‘₯ 3 βˆ’ 7π‘₯ + 6
2π‘₯ 3 + 3π‘₯ 2 βˆ’ 2π‘₯ βˆ’ 3
2π‘₯ 3 βˆ’ π‘₯ 2 βˆ’ 13π‘₯ βˆ’ 6
3π‘₯ 3 + 8π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 6
2π‘₯ 4 +6π‘₯ 3 + 6π‘₯ 2 + 2π‘₯
π‘₯5 + π‘₯4 βˆ’ π‘₯ βˆ’ 1
Higher Mathematics – Polynomials
Page 3
NR2
I can evaluate an unknown coefficient of a polynomial by applying the
remainder and/or the factor theorem.
1. 𝑓(π‘₯) = 2π‘₯ 3 + π‘Žπ‘₯ 2 + 𝑏π‘₯ + 4.
Given that (π‘₯ βˆ’ 2) is a factor of 𝑓(π‘₯), and the remainder when 𝑓(π‘₯) is divided by
(π‘₯ βˆ’ 5) is 54, find the values of a and b.
2. Find 𝑝 if (π‘₯ βˆ’ 4) is a factor of π‘₯ 3 βˆ’ 9π‘₯ 2 + 𝑝π‘₯ βˆ’ 28.
3.
4.
Given that (x + 1) is a factor of 2π‘₯ 3 + 3π‘₯ 2 + 𝑝π‘₯ βˆ’ 6
(a) Find the value of p
(b) Hence or otherwise, solve 2π‘₯ 3 + 3π‘₯ 2 + 𝑝π‘₯ βˆ’ 6 = 0
Find the value of k if (x+5) is a factor of 3π‘₯ 4 + 15π‘₯ 3 βˆ’ π‘˜π‘₯ 2 βˆ’ 9π‘₯ + 5
5. Given that (x-1) is a factor of π‘₯ 3 + π‘₯ 2 βˆ’ (𝑑 + 1)π‘₯ βˆ’ 4, find the value of β€˜t’ and hence
factorise fully.
6. Given that x = 3 is a root of the equation π‘₯ 4 βˆ’ 3π‘₯ 3 + 𝑝π‘₯ βˆ’ 5, find p.
7. When π‘₯ 4 βˆ’ 3π‘₯ 3 + 𝑝π‘₯ βˆ’ 5 is divided by (x+3) the remainder is 16.
Find the value of p.
SLC Education Resources - Duncanrig Secondary School
Page 4
NR3
I can solve a polynomial equation to determine where a curve cuts the
x-axis.
1.
A function is defined on the set of real numbers by 𝑓(π‘₯) = (π‘₯ + 3)(π‘₯ 2 + 4).
Find where the graph of y = 𝑓(π‘₯) cuts:
2.
(a)
the x -axis;
(b)
the y -axis.
A function is defined by the formula 𝑔(π‘₯) = 2π‘₯ 3 βˆ’ 7π‘₯ 2 βˆ’ 17π‘₯ + 10 where x
is a real number.
(a)
Show that (π‘₯ βˆ’ 5) is a factor of 𝑔(π‘₯), and hence factorise 𝑔(π‘₯) fully.
(b)
Find the coordinates of the points where the curve with
equation 𝑦 = 𝑔(π‘₯) crosses the x and y -axes.
3.
(Non-calculator)
(Non-calculator)
A function is defined by the formula 𝑓(π‘₯) = 5π‘₯ βˆ’ π‘₯ 3 .
Find the exact values where the graph of y = 𝑓(π‘₯) meets the x and y -axes.
(Non-calculator)
4.
β„Ž(π‘₯) = π‘₯ 3 βˆ’ 5π‘₯ 2 + 3π‘₯ + 9
(a)
(b)
(i)
Show that (π‘₯ + 1) is a factor of β„Ž(π‘₯).
(ii)
Hence or otherwise factorise β„Ž(π‘₯) fully.
One of the turning points of the graph of y = β„Ž(π‘₯) lies on the x -axis.
Write down the coordinates of this turning point.
5.
(Non-calculator)
Find where the graph of 𝑦 = π‘₯ 4 + 6π‘₯ 3 βˆ’ 12π‘₯ 2 βˆ’ 88π‘₯ βˆ’ 96 meets the
x and y -axes.
Higher Mathematics – Polynomials
(Non-calculator)
Page 5
NR4
I can find points of intersection by solving polynomial equations.
1).
𝑦 = π‘₯ 3 + π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 2
𝑦 = π‘₯βˆ’2
C
-3
-2
-1
1
2
B
A
Find the coordinates of the points of intersection namely A, B and C where the line
𝑦 = π‘₯ βˆ’ 2 meets the graph 𝑦 = π‘₯ 3 + π‘₯ 2 βˆ’ 5π‘₯ βˆ’ 2. (NB the diagram is not drawn to scale)
2).
𝑦 = 2π‘₯ + 3
𝑦 = π‘₯ 3 + 2π‘₯ 2 + π‘₯ + 1
C
B
-1.5
1.5
A
Find the coordinates A, B and C of the points of intersection between the line 𝑦 = 2π‘₯ + 3 and the
curve 𝑦 = π‘₯ 3 + 2π‘₯ 2 + π‘₯ + 1.
SLC Education Resources - Duncanrig Secondary School
Page 6
3)
( NB diagram not to scale)
𝑦 = 2π‘₯ 3 βˆ’ 11π‘₯ 2 + 12π‘₯ + 5
10
2
-1
𝑦 = 2π‘₯ βˆ’ 3
B
3
4
C
A
a) Fully factorise the polynomial 2π‘₯ 3 βˆ’ 11π‘₯ 2 + 10π‘₯ + 8
b) Hence or otherwise find the coordinates of the points of intersection of the line 𝑦 = 2π‘₯ βˆ’ 3
and the graph 𝑦 = 2π‘₯ 3 βˆ’ 11π‘₯ 2 + 12π‘₯ + 5
4)
18
𝑦 = βˆ’π‘₯ 3 βˆ’ 4π‘₯ 2 + 3π‘₯ + 18
A
B
C
-3
2
𝑦+π‘₯ =2
Find the points of intersection of the line 𝑦 + π‘₯ = 2 and the graph of 𝑦 = βˆ’π‘₯ 3 βˆ’ 4π‘₯ 2 + 3π‘₯ + 18.
Higher Mathematics – Polynomials
Page 7
NR5
1.
I have experience of cross topic exam standard questions.
Given that 𝑓 β€² (π‘₯) = 6π‘₯ 2 + 2π‘₯ βˆ’ 128 and (π‘₯ βˆ’ 8) is a factor of 𝑓(π‘₯), find
a) Formula for 𝑓(π‘₯)
b) Hence factorise 𝑓(π‘₯) fully
c) Solve 𝑓(π‘₯) = 0.
2. (a)
(i) Show that (π‘₯ βˆ’ 2) is a factor of π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8.
(ii) Factorise π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8 fully.
(iii) Solve π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8 = 0.
b)The diagram shows the curve with equation 𝑦 = π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ + 8.
𝑦 = π‘₯ 3 βˆ’ 5π‘₯ 2 + 2π‘₯ βˆ’ 2
A
0
B
C
The curve crosses the x-axis at A, B and C.
Determine the shaded area.
3. The diagram shows a sketch of the graph of 𝑦 = π‘₯ 3 βˆ’ 4π‘₯ 2 + π‘₯ + 6
𝑦 = π‘₯ 3 βˆ’ 4π‘₯ 2 + π‘₯ + 6
-1
0
Q
a) Show that the graph cuts the x-axis at (-1, 0).
b) Hence or otherwise fine the coordinates of Q.
c) Find the shaded area.
SLC Education Resources - Duncanrig Secondary School
Page 8
4. Functions 𝑓, 𝑔 π‘Žπ‘›π‘‘ β„Ž are defined on the set of real numbers by
ο‚·
ο‚·
ο‚·
𝑓(π‘₯) = π‘₯ 3 + 1
𝑔(π‘₯) = 2π‘₯ + 1
β„Ž(π‘₯) = 17 βˆ’ 11π‘₯
a) Find 𝑔(𝑓(π‘₯))
b) Show that 𝑔(𝑓(π‘₯)) + π‘₯β„Ž(π‘₯) βˆ’ 9 = 2π‘₯ 3 βˆ’ 11π‘₯ + 17π‘₯ βˆ’ 6
c) (i) Show that ( π‘₯ βˆ’ 2) is a factor of 2π‘₯ 3 βˆ’ 11π‘₯ + 17π‘₯ βˆ’ 6
(ii) Factorise 2π‘₯ 3 βˆ’ 11π‘₯ + 17π‘₯ βˆ’ 6
d) Hence or otherwise solve 𝑔(𝑓(π‘₯)) + π‘₯β„Ž(π‘₯) = 9
5. The line with equation y = 5x – 3 is a tangent to the curve with equation
𝑦 = π‘₯ 3 + π‘₯ 2 at A (1,2), as shown on the diagram. Show that the point B is (-3,-18)
𝑦 = π‘₯3 + π‘₯2
𝑦 = 5π‘₯ βˆ’ 3
A (1,2)
0
B
Higher Mathematics – Polynomials
Page 9
6.
𝑦 = 3π‘₯ + 12
16
B
A
𝑦 = βˆ’π‘₯ 3 βˆ’ 4π‘₯ 2 + 4π‘₯ + 16
a)
b)
c)
d)
Find where the graph 𝑦 = βˆ’π‘₯ 3 βˆ’ 4π‘₯ 2 + 4π‘₯ + 16 crosses the π‘₯ axis.
Calculate the points of intersection of the line 𝑦 = 3π‘₯ + 12 and the graph.
Find the shaded area A
Find the shaded area B
SLC Education Resources - Duncanrig Secondary School
Page 10
Answers
R1
R2
NR1
(π‘₯ + 4)(π‘₯ + 5)(π‘₯ βˆ’ 1)
(π‘₯ + 2)(2π‘₯ βˆ’ 3)(π‘₯ + 1)
(π‘₯ + 1)(2π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2)
a) (π‘₯ βˆ’ 2)(π‘₯ βˆ’ 4)(π‘₯ + 1)
b) π‘₯ = 2, π‘₯ = 4, π‘₯ = βˆ’1
5. a) (π‘₯ + 3)(π‘₯ βˆ’ 1)(π‘₯ βˆ’ 2)
b) (2π‘₯ + 3)(π‘₯ + 1)(π‘₯ βˆ’ 1)
c) (π‘₯ + 2)(π‘₯ βˆ’ 3)(2π‘₯ + 1)
d) (3π‘₯ + 2)(π‘₯ βˆ’ 1)(π‘₯ + 3)
e) 2π‘₯(π‘₯ + 1)πŸ‘
f) (π‘₯ + 1)2 (π‘₯ 2 + 1)(π‘₯ βˆ’ 1)
1.
2.
3.
4.
NR2
1.
2.
3.
4.
5.
6.
7.
a = -100, b =190
p = 27
(a) p = -5
(b) x = -1, 1.5, -2
k=2
t = -3
p = 5/3
p = 47
NR3
1.
(a)
(–3, 0)
(b)
(0, 12)
2.
(a)
proof
(b)
(–2, 0), ( 2 , 0), (5, 0); (0, 10)
3.
x = 0, – √5 , √5
4.
(a)
(ii)
(π‘₯ + 1)(π‘₯ βˆ’ 3)2
5.
(i) proof
1
(b)
(3, 0)
(–6, 0), (–2, 0)repeated, (4, 0)
Higher Mathematics – Polynomials
Page 11
NR4
1) A(-3,-5) B(0,-2) C(2,0)
2) A(-2,-1) B(-1,1) C(1,5)
3) A(-0.5,-4) B(2,1) C(4,5)
4) A(-4,6) B(-2,4) C(2,0)
NR5
1. a) 𝑓(π‘₯) = 2π‘₯ 3 + π‘₯ 2 βˆ’ 128π‘₯ βˆ’ 64
b) (x-8) (x+8) (2x+1)
c) x = 8, x= -8, x= -1/2
2. a) i)proof
ii) (x-2) (x-4) (x+1)
iii) x=2, x=4, x=-1
b) 59/12
3. proof
6. (a)
(c)
4. Proof
5. proof
(-4,0) (-2,0) (2,0)
(b)
(1,15) (-1,9) (-4,0)
βˆ’20
3
(d)
128
3
SLC Education Resources - Duncanrig Secondary School
Page 12