Chapter 2 Application Background of Circle Integrals On many occasions we repeatedly emphasize that application of engineering mathematics has the same importance as mathematics itself. Here we start the discussion from circle integral, e.g., Z1 0 dx pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 x2 ð2:1Þ Circle integral is related to capacitance C of conducting circle disk. We first consider a conducting circle disk with an infinitely small thickness shown in Fig. 2.1. Assume charge density rðr Þ on the conducting circle disk. According to the symmetry of the disk, rðr Þ is irrelevant to azimuthal angle u. Charge density on the periphery of the disk is distributed in the form of inverse square root, i.e., r0 rðr Þ ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2ffi 1 ar ð2:2Þ in which r0 denotes a maximum magnitude of the charge density. As shown in Fig. 2.2, on the periphery of the disk the charge density has the inverse square root distribution. The capacitance of the circle disk C is denoted as C ¼ QV © Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2017 C.-H. Liang, Notes on the Ellipsoidal Function, DOI 10.1007/978-981-10-2908-0_2 ð2:3Þ 11 12 2 Application Background of Circle Integrals Fig. 2.1 A conducting disk with an infinitely small thickness z σ o a y x σ (r ) Fig. 2.2 The distribution of the charge density over a circle disk σ0 0 a r in which Q is total charge of the disk, and V is the electric potential. Hence we have ZZ rðrÞrdrdu Q¼ ð2:4Þ s ZZ V¼ rðrÞ rdrdu 4per ð2:5Þ s Substituting Eq. (2.2) into Eq. (2.4), we have ZZ r0 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r 2ffi rdrd/ 1 s a h i a Z 1 d 1 r 2 2 a qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 2pr0 a2 r 2ffi 1 0 a qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi0 2 1 1 ar 2 ¼ 2pr0 a2 1 2 Q¼ a ¼ 2pr0 a2 ð2:6Þ 2 Application Background of Circle Integrals 13 Considering Eq. (2.6) and charge distribution shown in Fig. 2.2, we can completely think that the average charge density on the circle disk is r ¼ 2r0 ð2:7Þ Q ¼ rS ¼ rpa2 ¼ 2r0 pa2 ð2:8Þ We rewrite Eq. (2.6) as On the other hand, the electric potential V can be expressed as ZZ r0 rdrd/ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi r 2ffi 4per 1 s a r Za d a qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼2pr0 a r 2ffi 4pe 1 0 a a 2pr0 a 1 r sin ¼ 4pe a 0 pr0 a ¼ 4e V¼ ð2:9Þ According to Eq. (2.3), we can obtain the capacitance as follows: C ¼ QV ¼ 8ea ð2:10Þ Further, if we express the electric potential V in an integral form, we have Q ¼ 2pr0 a2 2pr0 a V¼ 4pe Z1 0 dx pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 x2 ð2:11Þ ð2:12Þ Therefore, we can get C ¼ R 14peadx pffiffiffiffiffiffi 2 0 ð2:13Þ 1x It can be clearly seen that capacitance of the conducting circle disk is tightly R 1 .pffiffiffiffiffiffiffiffiffiffiffiffiffi 1 x2 . related to the circle integral 0 dx In addition, according to the above discussion, we can know that there are not pffiffiffiffiffiffiffiffiffiffiffiffiffi circle integrals of the first and the second kinds. This is because factor 1 x2 is 14 2 Application Background of Circle Integrals always in the denominator of the studied problem. The second important application of the circle integral is to calculate the perimeter of the circle, i.e., Z1 L ¼ 4a 0 p dx pffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ 4a ¼ 2pa: 2 1 x2 ð2:14Þ http://www.springer.com/978-981-10-2907-3
© Copyright 2026 Paperzz