Sample Chapter




  

­  €‚ €ƒ    ­ 
€ƒ €ƒ „  ­…ƒ
†‡‡ˆˆ‡ˆ‡
†    
‰
€ Š
‹ †  Šˆ

†‡
†










­
€
‚

­
€
‚
­
€
‚
E2¢¢
E¢¢2
E2¢¢
E¢2
r=d
E2¢
E¢¢1
E¢1
E1¢¢¢
E1¢¢
E1¢
Two interacting atom
(a)
Three interacting atom
‘N’ interacting atom
(b)
(c)
 
 E
Empty levels
N/2
Filled levels


E
E
Conduction band
Eg £ 2 eV
Valence band
Distance
Conduction band
empty
Eg ≥ 3 eV
Valence band
filled
Distance





­ €
‚
ƒ„…€„
†
ƒ ‡
„„
ˆ‚
­
Fx
Ex
e-
Fext
me
Vacuum
+ Fint
+
+
+ Crystal +
a=
Fext
Fext
a = m*
e
+
x
(a)
(b)
ˆ
 ‚
‰Š
‹Œ
‰ Ž
ˆ

‚








  ­€
‚


v
d
E
 

 



 
€
€
‚

­
ƒ
 
„
…
††
‡
ˆ

1
   ­ € ‚ƒ 
„
……„„„
†…
… „ … „  ƒ„„„
„„
ƒ
­  „„†
‡…

­
…ˆ
……
‰…„
„
…†‡
„…
ƒ…„
Š
Š 
„
    

 ­
 €

‚ƒ Si
Si
Si
Conduction Band
Fifth electron of
dopant atom
Si
P
Si
Si
Si
Si
Eg
Si
Ed
Ev
Valence Band
At T = 0 K
Si
Donor levels
0.01 eV (Ge)
0.05 eV (Si)
Ec
At T = 0 K
Si
Si
P
Si
Si
Si
Si
Conduction Band
Free electron
available for
conduction
Ec
Ed
Eg
Donor levels
Ev
Valence Band
At T > 0 K
At T > 0 K
­




 ­ ­ €­
‚

ƒ„…
Conduction Band
Si
Si
Ec
Si
Eg
Si
Ga
Acceptor levels
Si
Ea
Ev
Si
Si
Valence Band
Si
(a) At T = 0 K
(a) At T = 0 K
Conduction Band
Si
Si
Si
Si
Ga
Si
Si
Si
Si
Ec
Eg
Acceptor levels
Ea
Ev
(b) At T > 0 K
Valence Band
(b) At T > 0 K






 ­
€‚
ƒ
ƒ

„…†
‡ˆ‰
 ­
1
Š
1
e
E EF
KT
ƒ Š … ‹ Š„Œ
ƒ 

 
E
E
N/2
EF
EF
0
1
f (E)
Distance
(a)
(b)
Conduction band in a conductor at 0K (a) Actual distribution
of electrons in the band (b) The Fermi-Dirac function.
 ­€‚ƒ
€‚ „ €…‚­
1
1
1
1
1 e E EF / 0 1 e
1 0
€‚ † ‡  €‚ ˆ €…‚­
€‚ †
1
1
1
0
1 e
1 e
1
€‚†
†
€‚ †­€…‚†
€‚ †
1
E EF / 0
1
†
1 e0 / 0
€‚ †
Case 2:






E
E
E
KT
EF
KT
KT
EF
EF
KT
0
Distance
(a)
0.5
f (E)
(b)
1
N (E)
(c)


­€ ‚ ‚
ƒ
1
1
1
0
1 e
1 1 2
­ „Fermi
level defined as the energy level at which the probability of electron
occupancy…
Fermi energy, is the average energy possessed by the electrons
which participate in conduction process in conductors at temperatures above
0K.
 €



 
  
­

 €‚ E
E
Conduction Band
Empty
EC
EF
Eg
EF
EV
Valence Band
Full
0
Distance
(a)
f (E)
1
(b)
ƒ
3/ 2
EF EC
2 me* KT
KT
e
„ 2
h2
ƒ
„2
2 mh* KT
h2
3/ 2
e
EV EF
KT
  At T = 0K
Conduction band
•
At T > 0K
Conduction band
Ec
Ec
at 0K
EF
•
at 0K
EF
Hole
Ev
Valence band
Valence band
-•
Ev E Æ Fermi level
F
-•
Ec Æ Bottom of conduction
band
Ev Æ Top of valence band



  

 ­
€
­­ ‚ƒ
­­„ ‚  
… †
Fermi level in -type semiconductor (a) at 0°K (b) as function of temperature.
Ed
EC
2



EF


Ea EV


EF
2




C.B.
Conduction band
0
Eg/2
Ea
EF
EV
EF Acceptor
levels
Ea
EV
V.B.
Valence
Band
0
(a) At 0° K
T
p-Type
(b)
Fermi level in -type semiconductor (a) at 0°K (b) as function of temperature.


   P–type Bar
t
Bz
Ey
Jx
z
E
q
Ex
W
F
y
x
I
VH
+
–
 ­
€‚
­
ƒ
  
ƒ
„…
‚  J
x
ne
Jx
BJ
x
ne
n
eVH

w
    


eVH
BJ
x
w
n
wBJ x
ne
wBI
neA
­
I

A
wBI BI
€
net
newt


VH /w
BJ
1
EH
x J
B
JxB
Jx B
ne
x
1
ne
1
Pe

 B I
t

Knowing the thickness of the semiconductor () by measuring Hall voltage
with voltmeter




Concentration of charge carriers
1
BI
RH e VH t e
1
BI
RH e
VH t e
­
€‚
Hall angle ƒ
„ 
E
€€
H
Ex
V
BJ x
H €…
w
ne
۠
BJ x
ne
Jx
B
ne
1
ne
€‡
€ˆ
  

 
 
1
BI
1
BI
eRH VH t e
eRH
VH t e


 VH t
ne
B I
­
  € ‚

‚
ƒ


 „


‚

…

Immobile negative Diffusion of electron Immobile positive
acceptor ion
donor ion
from N to P
P
Free hole
Silicon
Silicon
N
Free electron
   


 




Immobile negative
Immobile positive
Depletion layer donor ion
acceptor ion
P
Silicon
Silicon
N
Free hole
Free electron
 


p-type
E
n-type
E
Conduction Band
Conduction Band
EFn
EFP
Valence Band
Valence Band
(a)
Metallurgical
junction
E
Conduction Band
EFn
Electron
current Jm
Hole current Jhp
EFp
Valence Band
(b)
junction at the instant of formation—(a) Energy band diagrams of type and -type semiconductors (b) Energy band diagram at the instant of
joining which illustrates the position of Fermi levels on each side and
consequent carrier migration across the junction.

   




 


­
p-n Junction
Conduction Hill
(Eg + eVo)
Conduction Band
eVo
1
Fermi Level
EF
Eg
EF
3
Electron energy decreases
Hole energy decreases
2
Hole energy increasses
Electron energy increases
Depletion
region
Valence Band
Valence Hill
4
p
n
 € ‚

ƒ
 „  …
(a) Forward biasing (b) Symbolic representation of - junction.

 



­ € ‚ ‚
I R 1 e
eV
KT
(a) Reverse biasing (b) Symbolic representation of - junction.
Electron
Drifting path of electron
I
+
V
-
Drift current in a semiconductor.



 dn
dx
dn
dx



dn
e
dx

dn

 Dn e
dx

dp
 Dp e 
dx

 D .
­€
‚
ƒ
ƒƒƒ
Dp e
dp
dx
dn
dx
pe
Dn e
p
E
Dp e
dp
dx
ne
n
E
Dn e
dn
dx


     







 
hc
­€


hc
E
g

‚
ƒƒ„ …†‡„ˆˆ‰ …† 
 6.62 10
34
8
Eg
12400
A
Eg ev
 
 
 

­
€‚€ƒ€‚ƒ
p-type
n-type
Eg hv
Ec
hv
Ev


  ­
„


   




­€



‚
 
Eg1 > Eg2 > Eg3

Cell 1 (Eg1)

Cell 2 (Eg2)




 
­
Antireflection coating
€
Au grid
n-AllnP2

n-GaInP2
Top cell

p-GaInP2

p+GaAs
‚ Tunnel diode
n+GaAs
n-AIGaAs
  n-GaAs
ƒ Bottom cell
p◊GaAs
„…† Substrate
p+◊GaAs
 
­‡

ˆ
ˆ

‰Š…‹ŒŽ
‘’
’ƒ“”
•† –…†­
— 



  2 m*e kT
h2
3/ 2
2
e
3/ 2
EC EF / kT
2 mh* kT
e EF EV / kT
2
h
 
­
€‚
  
­ 
€‚
 ƒ „
…
†…
 ƒ

‡
 2
1
ne




  

 
­ €
‚ ƒ 1
JBW BI
ne
net

1
ne
1
eRH
BI
VH t e
1
eRH
BI
VH t e

VH t
BI
E
Conduction band
Ec
EF =
Ed
Nd = 1024 atoms/m3
Ec + Ed
2
Ec Æ Bottom of the conduction
band
Ev Æ Top of the valence band
EF Æ Fermi level
Ed Æ Donor energy level
Ei Æ Intrinsic Fermi level
Ei
Nd = 1021 atoms/m3
Ev
Valence band
O
T
E
Ec
Ev
EF
Ea
Ei
Æ
Æ
Æ
Æ
Æ
Bottom of the conduction band
Top of the valence band
Fermi level
Acceptor energy level
Intrinsic Fermi level
Conduction band
Ec
Na = 1021 atoms/m3
Ei
EF =
Na = 1024 atoms/m3
Ea
Ec + Ed
2
Ev
Valence band
O
T
The discrete energy levels formed by the doped acceptors are called acceptor
levels. This acceptor level lies just above the valence band.
The discrete energy levels formed by the doped donors are called donor
levels. This donor level lies just below the conduction band.
  In the formation of a -type semiconductor trivalent impurities like Ga or
boron is doped to a pure semiconductor like Ge or Si.
e
e
h
4
1.6 10
19
4
2.88 10
0.14 0.04
20

 ­€‚ƒ„ € ƒ 
­€‚ƒ
…† ‡
†‡
m2
V
m2
ˆ
V
e(
e
0.47
h)
16
.
€
1
1
10
ˆ
e (
19
e
h
)
0.56
­€‰ ‡
   † Š ‹ † †
­ŒŽŒ ˆŠ‘†
­ Ž ˆ
Œ ­ ’ ­
i
e+
e
h
1
e+
e
2 10
4
2 10
4
1
h
1
1.6 10
1
1.6 10
19
19
6 0.2
6.2
1
1.984 10
22
m2
 Vs

 

­


 
€
€
‚ ƒ „
 … ‚ƒ„

C/m
V sec
†  1
1
2.2
‡
ˆ
‡­  ‰Š† ‰Š†
‹ˆ
­
 
‰Š
‰Š
1
2.3
l
10 2
A
10 6


 
­€
‚ƒ­
­ƒ
„ƒ
…† ‡ˆ €ˆ
 ˆ ‰
Š­‹ ­Œ
‹
2 m*e k B T
2
h2
Ž­
3
Eg
2
e
2 k BT
2 3.14 9.11 10 31 1.38 10
2
2
6.625 10 34
3
23
300
3
2
1.1 1.6 10
e
2 1.38 10
23
19
300
16
21.25
2 5.3964 10 2 e
€ €
€ € ‘



„
‹’

“  ‘ „‹ ‹  
 „ƒ
…† ˆ  ˆ “
ˆ
ˆ ˆ‰
l
A
l
A
1 10 2
1 10 3 1 10
2.32
1 10 2
2.32 10
Area = Breadth × Thickness
3
6
      ­­
€ ‚ƒ „…­…­…
1
†
2
– Eg
C e
2k B T
‡ ˆ
ˆ  ˆ
ˆ 
– Eg
C e
2k B T1
C e
2k B T2
– Eg
‰
Љ
e
Eg 1 1
2 k B T1 T2
1.2 1.6 10
e
2 1.38 10
1.2 1.6 10
e
2 1.38 10
19
23
1.666 10
19
23
3
e
1
1
600 300
3.19872 10
22
2 1.38 10
23
e11.59
  
  
   ­
€
‚‚
ƒ
V t
 H
IB

37 10 6 1 10
20 10 3 0.5
3
3.7 10
0.01
8
 „ …†
‡ˆ‰ˆ
­€ˆƒ­Š
€
‰ˆ
­€
­­ 
ˆ

J B W
500 0.6 5 10 3

na e
1020 1.6 10 19
‹­ 
‹­ Œ…
­Ž…
‘…Ž ‡ 
€Ž…
‘…„
­  „

€ ­ „
  ­­  ‚
180
ne e
1.772 10
22
1.6 10
19

 
­
€‚
‚ƒ
„
… †‡ ƒ‡‡ˆ
1
ne
‰ Š ‹
i
e
e
h
1
e
1
e
h
2 10
4
2 10
4
1
1.6 10
19
1
1.6 10
6 0.2
1
19
6.2
1.984 10
22
Œ Ž  ‚
ƒƒ Ž
…

‘

‚
€
„
… †ƒƒ ‡ ‡ ˆˆ
1
ne
1
RH e
1
3.66 10
4
’’ƒ 1.6 10
19
RH
3.66 10
4
8.93 10
3
  


   
  
­€ ‚  
‚  ‚ƒƒ
„

e
e
3 104
1.6 1019 1300 10
4
3 104
2.08 10
20
… 
†
„
2
ni2
ne
1.5 1016
1.4423 10 24
‡ 
†
­
3
e
h
9
1.6
3
8
ˆ 
†
‰
2
ni2
1.5×1016
=
nh 3.75×10 24
‡ 
†
Š
‹ 
 
Œ
… †
e
1
e
h
1
7.68 10
10 10
h
1
1.6 10
2
19
480 10
4
1350 10
4
22
ni2
nh
2
1.5 1016
1.3 1021
e
1
e
e
10 10
e
2
1
1.6 10
19
1
2.16 10
21
 
 
­€‚ ƒ 1
ne
3.66
8.93
10
10
RH
4
3
„



­