1 CLASS 3 (Sections 1.4) Unit impulse and unit step functions ∙ Used as building blocks to construct and represent other signals. 1 u[n] δ[n] Discrete-time unit impulse and unit step functions: ⎧ ⎧ ⎨ 0, 𝑛 = 0 ⎨ 0, 𝑛 < 0 𝛿[𝑛] = , and 𝑢[𝑛] = . ⎩ 1, 𝑛 ∕= 0 ⎩ 1, 𝑛 ≥ 0 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 n 1 0 −5 −4 −3 −2 −1 0 1 2 3 4 5 n ∙ 𝛿[𝑛] = 𝑢[𝑛] − 𝑢[𝑛 − 1]. ∙ 𝑢[𝑛] = ∙ To pick the 𝑛0 −th sample of a signal 𝑥[𝑛], multiply 𝑥[𝑡] by 𝛿[𝑛 − 𝑛0 ] because ∑𝑛 𝑚=−∞ 𝛿[𝑚] = ∑∞ 𝑘=0 𝛿[𝑛 − 𝑘]. x[n] 1 0 −1 −5 −4 −3 −2 −1 0 1 2 3 4 5 n x[n]δ[n−2] 𝑥[𝑛]𝛿[𝑛 − 𝑛0 ] = 𝑥[𝑛0 ]𝛿[𝑛 − 𝑛0 ]. 1 0 −1 −5 −4 −3 −2 −1 0 1 2 3 4 5 n 2 Continuous-time unit impulse and unit step functions: ⎧ ⎨ 0, 𝑡 < 0 𝑢(𝑡) − 𝑢(𝑡 − Δ) . 𝑢(𝑡) = , and 𝛿(𝑡) = lim 𝛿Δ (𝑡) where 𝛿Δ (𝑡) = Δ↓0 Δ ⎩ 1, 𝑡 > 0 1 δ∆(t) u(t) 1/∆ 0 area=1 0 0 t 0∆ t We use the following graphical notations for 𝛿(𝑡) and 𝑘𝛿(𝑡): 1 0 area=1 area=k kδ(t) δ(t) k 0 0 t 0 t 𝑑 𝑢(𝑡). 𝑑𝑡 ∙ 𝛿(𝑡) = ∙ 𝑢(𝑡) = ∙ To pick the value of a signal 𝑥(𝑡) at 𝑡 = 𝑡0 , multiply 𝑥(𝑡) by 𝛿(𝑡 − 𝑡0 ) because ∫𝑡 −∞ 𝛿(𝜏 )𝑑𝜏 = ∫∞ 0 𝛿(𝑡 − 𝜏 )𝑑𝜏 . ∫ 𝑥(𝑡)𝛿(𝑡 − 𝑡0 ) = 𝑥(𝑡0 )𝛿(𝑡 − 𝑡0 ) ∞ ⇒ 𝑥(𝑡)𝛿(𝑡 − 𝑡0 )𝑑𝑡 = 𝑥(𝑡0 ). −∞ 3 Example: Consider a unit mass with initial velocity 𝑣(0). If we apply the force 𝑓 (𝑡) = 𝑘𝛿Δ (𝑡), 𝑣(𝑡) will be ∫ 𝑡 𝑣(𝑡) = 𝑣(0) + 𝑘 𝛿Δ (𝜏 )𝑑𝜏, for 𝑡 ≥ 0. 0 v(t) v(0)+k v(0) 0 ∆ t As Δ ↓ 0, the velocity transfer from 𝑣(0) to 𝑣(0) + 𝑘 will be faster. If we apply the idealized force 𝑓 (𝑡) = 𝑘𝛿(𝑡), 𝑣(𝑡) will be ∫ 𝑡 𝑣(𝑡) = 𝑣(0) + 𝑘 𝛿(𝜏 )𝑑𝜏 = 𝑣(0) + 𝑘𝑢(𝑡), for 𝑡 ≥ 0. 0 In other words, the velocity will jump from 𝑣(0) to 𝑣(0) + 𝑘 instantaneously. v(t) v(0)+k v(0) 0 t
© Copyright 2025 Paperzz