Section 10.2 Introduction to Conics: Parabolas 913 1. A circle is formed when a plane intersects the top or bottom half of a double-napped cone and is perpendicular to the axis of the cone. 2. An ellipse is formed when a plane intersects only the top or bottom half of a double-napped cone but is not perpendicular to the axis of the cone, not parallel to the side of the cone, and does not intersect the vertex. 3. A parabola is formed when a plane intersects the top or bottom half of a double-napped cone, is parallel to the side of the cone, and does not intersect the vertex. 4. A hyperbola is formed when a plane intersects both halves of a double-napped cone, is parallel to the axis of the cone, and does not intersect the vertex. 7. x2 8y Vertex: 0, 0 Opens downward since p is negative; matches graph (d). 6. x2 2y 5. y2 4x Vertex: 0, 0 Opens to the left since p is negative; matches graph (e). Vertex: 0, 0 p 12 > 0 Opens upward; matches graph (b). 9. ( y 1)2 4(x 3) 8. y2 12x Vertex: 3, 1 Opens to the right since p is positive; matches graph (a). Vertex: 0, 0 p 3 < 0 Opens to the left; matches graph (f). x2 2y 1 p 2 < 0 Opens downward; matches graph (c). y Vertex: 0, 0 4 y ⇒ h 0, k 0, p 1 2 1 2 Focus: Vertex: (0, 0) Focus: 0, Vertex: 3, 1 12. y 2x2 ⇒ x2 4 18y 11. y 12 x2 x2 10. x 32 2 y 1 1 2 Directrix: y 1 8 1 2 3 4 −3 −4 5 12 x − 4 −3 − 2 − 1 Directrix: y y 0, 18 1 −5 4 −6 3 −7 2 1 x 1 −1 2 3 14. y2 3x ⇒ 434 x 13. y2 6x y2 4 32 x ⇒ h 0, k 0, p 23 Vertex: 0, 0 Vertex: 0, 0 Focus: y 3 Focus: 2, 0 34, 0 Directrix: x 34 4 3 3 Directrix: x 2 y 4 2 − 6 − 5 − 4 −3 − 2 − 1 x x 1 2 2 −2 −3 −4 −4 4 6 8 914 Chapter 10 Topics in Analytic Geometry 16. x y2 0 15. x2 6y 0 x2 6y 4 32 y ⇒ h 0, k 0, p Focus: 0, 32 Focus: 1 −4 −3 3 2 Vertex: 0, 0 2 3 2 y y2 x 4 14 x y Vertex: 0, 0 Directrix: y 32 x 1 −1 3 14, 1 0 −5 −4 −3 −2 −1 1 Directrix: x 4 4 x 1 −1 −2 −2 −3 −3 −4 −5 −6 17. (x 1)2 8( y 2) 0 18. x 5 y 12 0 y 12 4 14 x 5 (x 1)2 4(2)( y 2) h 1, k 2, p 2 Vertex: 5, 1 y Vertex: (1, 2) 4 Focus: (1, 4) 2 1 21 Focus: 5 4 , 1 ⇒ 4 , 1 3 1 19 Directrix: x 5 4 4 1 Directrix: y 0 − 3 −2 − 1 y x 1 2 3 4 5 6 −3 4 −4 2 −6 −4 x −2 2 −2 −4 3 19. x 2 4 y 2 2 20. x 12 4 y 1 41 y 1 2 y x 32 2 41 y 2 1 Vertex: 2, 1 8 7 6 5 4 3 h 32, k 2, p 1 3 Vertex: 2, 2 3 Focus: 2, 3 1 1 Focus: 2, 1 1 ⇒ 2, 2 Directrix: y 1 1 0 y 8 1 x −7 −6 −5 −4 −3 −2 −1 Directrix: y 1 6 1 2 3 −2 4 −6 −4 x −2 2 4 −2 21. y 14x2 2x 5 y 4y x2 2x 5 4y 5 1 x2 22. 4x y2 2y 1 1 33 y 12 32 6 2x 1 y 12 41x 8 4 4y 4 (x 1)2 Vertex: 8, 1 2 (x 1)2 4(1)( y 1) h 1, k 1, p 1 Vertex: 1, 1 Focus: 1, 2 Directrix: y 0 x 14 y2 2y 33 −2 x 2 4 y Focus: 9, 1 4 Directrix: x 7 2 x 2 −2 −4 −6 4 6 10 Section 10.2 915 24. y2 4y 4x 0 23. y2 6y 8x 25 0 y2 4y 4 4x 4 y2 6y 9 8x 25 9 h 2, k 3, p 2 Vertex: (2, 3) −6 x −4 −2 Directrix: x 0 4 Focus: 0, 2 2 −8 6 Vertex: 1, 2 y − 10 y y 22 41x 1 ( y 3)2 4(2)(x 2) Focus: (4, 3) Introduction to Conics: Parabolas Directrix: x 2 x −4 2 4 −2 −4 −6 −8 26. x2 2x 8y 9 0 25. x2 4x 6y 2 0 x2 2x 1 8y 9 1 x2 4x 6y 2 x 12 8 y 1 42 y 1 3 Vertex: 1, 1 Focus: 1, 3 −8 10 Directrix: y 1 x2 4x 4 6y 2 4 x 22 6 y 1 x 22 4 32 y 1 h 2, k 1, p 32 Vertex: 2, 1 4 −14 −9 10 1 Focus: 2, 2 5 Directrix: y 2 −12 On a graphing calculator, enter: 1 y1 6x2 4x 2 27. y2 x y 0 y2 1 4 y x y 12 2 4 14 x 14 y2 4x 4 41x 1 −10 h 14, k 12, p 14 Vertex: Focus: 28. y2 4x 4 0 4 1 4 2 Vertex: 1, 0 8 Focus: 0, 0 −4 −4 Directrix: x 2 14, 12 0, 12 20 −8 1 Directrix: x 2 To use a graphing calculator, enter: y1 12 14 x 1 1 y2 2 4 x 29. Vertex: 0, 0 ⇒ h 0, k 0 Graph opens upward. x2 4py Point on graph: 3, 6 32 4p(6) 9 24p 3 8 p Thus, x2 438 y ⇒ x2 32 y. 30. Point: 2, 6 31. Vertex: (0, 0) ⇒ h 0, k 0 x 3 3 Focus: 0, 2 ⇒ p 2 ay2 2 a62 1 18 a 1 2 x 18 y y2 18x x2 4py x2 4 32 y x2 6y 916 Chapter 10 32. Focus: 52, 0 Topics in Analytic Geometry ⇒ p 52 33. Vertex: (0, 0) ⇒ h 0, k 0 y 2 4px Focus: (2, 0) ⇒ p 2 y 2 10x y2 4px 34. Focus: 0, 2 ⇒ p 2 x2 4py x2 8y y2 4(2)x y2 8x 35. Vertex: (0, 0) ⇒ h 0, k 0 36. Directrix: y 3 ⇒ p 3 37. Vertex: (0, 0) ⇒ h 0, k 0 Directrix: y 1 ⇒ p 1 x2 4py Directrix: x 2 ⇒ p 2 x2 4py x2 12y y2 4px x2 41y y2 42x x2 4y y2 8x 38. Directrix: x 3 ⇒ p 3 y2 4px y2 12x 39. Vertex: (0, 0) ⇒ h 0, k 0 Horizontal axis and passes through the point (4, 6) y2 4px x2 4py 32 4p3 9 12p 62 4p(4) 36 16p ⇒ p 40. Vertical axis Passes through: 3, 3 9 4 y2 494 x p 34 x2 3y y2 9x 41. Vertex: 3, 1 and opens downward. Passes through 2, 0 and 4, 0. y (x 2)(x 4) x2 6x 8 (x 3)2 1 (x 3)2 ( y 1) 42. Vertex: 5, 3 ⇒ h 5, k 3 Passes through: 4.5, 4 y k2 4px h y 32 4px 5 1 4p4.5 5 p 12 y 32 2x 5 44. Vertex: 3, 3 ⇒ h 3, k 3 Passes through: 0, 0 x h2 4p y k x 32 4p y 3 0 32 4p0 3 9 12p p 34 x 32 3 y 3 45. Vertex: 5, 2 Focus: 3, 2 Horizontal axis p 3 5 2 y 2 42x 5 2 y 22 8x 5 43. Vertex: (4, 0) and opens to the right. Passes through 0, 4. (y 0)2 4p(x 4) 42 4p(0 4) 16 16p 1p y2 4(x 4) 46. Vertex: 1, 2 ⇒ h 1, k2 Focus: 1, 0 ⇒ p 2 x h2 4p y k x 12 42 y 2 x 12 8 y 2 Section 10.2 47. Vertex: 0, 4 Directrix: y 2 Vertical axis Introduction to Conics: Parabolas 49. Focus: 2, 2 Directrix: x 2 Horizontal axis Vertex: 0, 2 48. Vertex: 2, 1 ⇒ h 2, k1 Directrix: x 1 ⇒ p 3 p422 y k2 4px h x 02 42y 4 p202 y 12 43x 2 x2 8 y 4 ( y 2)2 4(2)(x 0) y 12 12x 2 50. Focus: 0, 0 ( y 2)2 8x 51. ( y 3)2 6(x 1) Directrix: y 8 ⇒ p 4 52. y 12 2x 4 y 1 ± 2x 4 For the upper half of the parabola: y 3 6(x 1) ⇒ h 0, k 4 y 1 ± 2x 4 y 6(x 1) 3 x h2 4p y k 917 Lower half of parabola: y 1 2x 4 x2 44 y 4 x2 16 y 4 53. y2 8x 0 ⇒ y ± 8x 1 2 54. x2 12y 0 ⇒ y1 12 x 10 x y 3 0 ⇒ y2 3 x xy20 ⇒ yx2 −5 25 −10 1 2 x2 4 Point: (4, 8) 12 4 2 y x 1 2 1 b 2 d2 4 0 8 21 Focus: 17 2 d1 1 b 2 d2 3 0 92 21 p 2 d1 d2 ⇒ b 8 Slope: m 8 8 4 40 y 4x 8 ⇒ 0 4x y 8 x-intercept: (2, 0) −10 12y d1 2 12 x 2 2y 56. Focus: 0, −12 Using the trace or intersect feature, the point of tangency is 6, 3. The point of tangency is (2, 4). 55. x2 2y ⇒ p 6 1 2 0, 2 1 2 2 5 1 b5 2 9 2 92 92 3 m 03 9 Tangent line: y 3x ⇒ 6x 2y 9 0 2 3 x-intercept: , 0 2 b 918 Chapter 10 Topics in Analytic Geometry 1 1 57. y 2x2 ⇒ x2 y ⇒ p 2 8 Point: (1, 2) 1 y x2 2 1 8 1 1 d1 b b 8 8 Focus: 0, d2 81y x 4 2 2 Focus: 17 8 d1 d2 ⇒ b 2 2 2 4 1 0 1 8 1 0, 8 d1 1 b 8 d2 2 0 8 81 2 2 65 8 65 1 b 8 8 y 4x 2 ⇒ 0 4x y 2 1 x-intercept: , 0 2 2 p 1 0 2 81 Slope: m y 2x2 58. b m 64 8 8 8 8 8 20 Tangent line: y 8x 8 ⇒ 8x y 8 0 x-intercept: 1, 0 x 1062 45R 14,045 59. x2 212x 11,236 45R 60. Maximum revenue occurs at x 135. 11,236 30,000 R 265x 54x2 The revenue is maximum when x 106 units. 15,000 0 275 0 0 225 0 61. Vertex: 0, 0 ⇒ h 0, k 0 Focus: 0, 4.5 ⇒ p 4.5 (x h)2 4p(y k) (x 0)2 4(4.5)(y 0) 1 2 x2 18y or y 18 x 62. (a) (b) Vertex: 0, 0; opens upward y y 0 ax 0 2 (−640, 152) (640, 152) 152 a6402 152 a 6402 x 19 a 51,200 An equation of the cables is y 19 x2. 51,200 (c) Distance, x Height, y 0 0 250 23.19 400 59.38 500 92.77 1000 371.09 Section 10.2 63. (a) Vertex: 0, 0 ⇒ h 0, k 0 Points on the parabola: ± 16, 0.4 919 (b) When y 0.1 we have 1 2 0.1 640 x x2 4py 64 x2 ± 162 4p0.4 ± 8 x. 256 1.6p Introduction to Conics: Parabolas Thus, 8 feet away from the center of the road, the road surface is 0.1 foot lower than in the middle. 160 p x2 4160y x2 640y 1 y 640x2 64. Vertex: 0, 0 65. (a) V 17,5002 mihr y 0 4px 0 2 24,750 mihr y2 4px At 1000, 800: 8002 4p1000 ⇒ p 160 y2 4160x x 02 44100 y 4100 x2 16,400 y 4100 y2 640x 66. (a) (b) p 4100, h, k 0, 4100 67. (a) x2 12 322 y 75 16 x2 64 y 75 (b) When y 0, x2 6475 4800. 0 18 Thus, x 4800 403 69.3 feet. 0 (b) Highest point: 6.25, 7.125 Range: 15.69 feet 68. 540 mi 1 hr 5280 ft 1 mi 1 hr 60 min 1 min 792 fts 60 s s 30,000 69. False. It is not possible for a parabola to intersect its directrix. If the graph crossed the directrix there would exist points closer to the directrix than the focus. The crate hits the ground when y 0. x2 v2 y s 16 x2 7922 0 30,000 16 x2 1,176,120,000 x 34,295 The distance is about 34,295 feet. 70. True. If the axis (line connecting the vertex and focus) is horizontal, then the directrix must be vertical.
© Copyright 2026 Paperzz