Pairing Pairing in in Covariant Covariant Density Density Functional Functional Theory Theory INT, Nov. 16, 2005 Peter Ring Technical University Munich 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 1 Content Relativistic pairing in nuclear matter Applications of RHB-theory in finite nuclei Applications of rel. QRPA-theory in finite nuclei Rel. methods beyond mean field D. Vretenar, A. V. Afanasjiev, G. A. Lalazissis, P. Ring, Phys. Rep. 409 (2005) 101 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 2 General remarks about nuclear pairing 1) There is plenty of experimental evidence 2) In principle pairing is a small effect (∆<<M) 3) Most important close to the Fermi surface 4) Smearing of the Fermi surface (v2) 5) Gap in the spectrum Ek = (ε k − λ )2 + Δ2 6) Influence on response functions (e.g. moments of inertia) 7) Phase transition normal fluid → superfluid (with λ,ω,T) 8) Few exp. data on details of pairing (one parameter ∆) 9) Crucial quantity: pairtransfer matrix elements J (2) = ∑ ν 17.11.2005 ν Jx 0 E ν − E0 2 ≈∑ k <k' k J x k' 2 (uk vk ' − vk u k ' ) Ek + Ek ' Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 3 Relativistic Pairing: One has to quantize the meson fields: Fermion fields: Meson fields: Interaction: 3 ˆ d ∫ r ψ(α p − βm)ψˆ + ω a ∑ μ μ aμ μ − ∑ ψˆ Γμ ψˆ φˆ μ neglect retardation μ gμ Eliminate the meson operators: Formulation in Green’s functions: −m r - r' μ e 3 ˆ (r')Γμ ψˆ (r') d r φˆ μ (r ) = ψ ' 4π ∫ r - r' Gorkov factorization ψ1+ ψ2+ ψ3ψ4 ≈ ψ1+ψ4 ψ2+ ψ3 − ψ1+ψ3 ψ2+ψ4 + ψ1+ ψ+2 ψ3ψ4 direct term 17.11.2005 exchange term pairing term Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 4 Relativistic Hartree Bogoliubov (RHB) Unified description of mean-field and pairing correlations chemical potential quasiparticle energy Dirac hamiltonian pairing field quasiparticle wave function H. Kucharek, P. Ring, Z. Phys. A339 (1991) 23 17.11.2005 Gogny D1S Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 5 Pairing in nuclear matter 1 RMF+BCS Gap equation: 1 Δ( p ) = − 2 4π ∞ ∫ v pp ( p, k ) 0 S0 − Channel Δ(k ) (ε(k ) − λ )2 + Δ2 (k ) k 2 dk e.g.: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 6 Pairing matrix elements: vpp(k,p=0.8) mσ = 520 MeV mσ = 390 MeV k[fm-1] 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 7 Gogny σ-ω model All relativistic forces, e. g. NL1, NL2,NL3 … overestimate nuclear pairing by a factor 3, because they do not have a cut off in momentum space 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 8 Relativistic structure of pairing: Relativ.Pairing Δ ++ Δ +− ⎛m +V − S ⎜ ⎜ σp H =⎜ Δ ++ ⎜ ⎜ Δ −+ ⎝ σp Δ ++ − m −V − S Δ +− Δ −+ − m −V + S Δ −− − σp ⎞ ⎟ Δ −− ⎟ − σp ⎟ ⎟ m + V + S ⎟⎠ Δ + − = Δ − + << Δ + + << σp therefore we neglect Δ −− Δ +− Δ +− total scalar vector time-like vector spacelike 17.11.2005 M. Serra, P. Ring, PRC 65 (2002) 064324 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 9 The pairing gap at the Fermi surface 3.0 Bonn Gogny Δ (kF) (MeV) 2.0 maximal maximal pairing pairing at at the the Fermi Fermi surface: surface: --------------------------------------------------------------------------------------------------potential Δ kkFF(fm potential ΔFF(MeV) (MeV) (fm-1-1)) Bonn 2.80 0.76 Bonn A A 2.80 0.76 Bonn B 2.84 0.76 Bonn B 2.84 0.76 Bonn 2.83 0.76 Bonn C C 2.83 0.76 Gogny 2.78 0.80 Gogny D1S D1S 2.78 0.80 1.0 0.0 0.0 0.5 -1 1.0 1.5 kF (fm ) free NN-forces, which reproduce the phase shift in the 1S channel give pairing similar to the Gogny force 0 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 10 Contributions of the various mesons in the Bonn-potential to pairing: M. Serra, A. Rummel, P. Ring, PRC 65 (2002) 014304 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 11 Gogny D1S 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 12 Wave functions of the Cooper pair in momentum space: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 13 Wave functions of the Cooper pair in r-space: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 14 Influence of the repulsive core in Bonn-pot.: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 15 Coherence length: M. Serra, A. Rummel, P. Ring, PRC 65 (2002) 014304 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 16 Is the gap caused by the repulsive part of the: force? 1 Δ( p ) = − 2 4π 17.11.2005 ∞ ∫ v pp ( p, k ) 0 Δ(k ) (ε(k ) − λ )2 + Δ2 (k ) k 2 dk Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 17 Relativistic Hartree Bogoliubov (RHB) ' E δ RMF hˆ = δρˆ ˆΔ = δEGOG δκˆ E[ρ,κ] = ERMF[ρ] + EGogny[κ] T. Gonzales-Llarena, J.L. Egido, G.A. Lalazissis, P. Ring PLB 379 (1996) 13 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 18 Density functional: Density functional 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 19 renormalized relativistic RHB for zero range pairing Renormalized δ-pairing constant g Vpp=g(ρ)δ(r-r‘) g(ρ) Bulgac, Yu, PRC 65, 051305 (2002) Niksic, Ring, Vretenar, PRC 71, 044320 (2005) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 20 renormalized δ-pairing in finite nuclei for for density density dependend dependend g(ρ) g(ρ) the the effective effective coupling coupling shows shows aa peak peak at at the the surface surface 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 21 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 22 Applications of pairing in finite nuclei Moments of inertia in rotating nuclei Halo phenomena at the neutron drip line Quasiparticle-RPA for excited states • IVGDR in Sn-isotopes • Pygmy modes Methods beyond mean field • projected density functionals (PDFT) • relativistic GCM • particle vibrational coupling • decay width of Giant resonances D. Vretenar, A. V. Afanasjiev, G. A. Lalazissis, P. Ring, Phys. Rep. 409 (2005) 101 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 23 pairing in superdeformed bands: Pairing important: Gogny D1S (no free parameter). With Skyrme-forces one needs surface pairing Does surface pairing compensate for finite range? 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 24 Excitation of the superdef. minimum: 194Hg Exp: Ex = 6.02 NL3: = 6.0 NL1: = 5.6 Gogny: = 6.9 Skyrme: = 5.0 WS: = 4.6 G. A. Lalazissis, P. Ring, PLB 427 (1998) 225 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 25 normal deformed bands in the rare earth region A.V. Afanasjev et al., PRC 62, 054306 (2000) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 26 Neutron halo‘s halo‘s Neutron Mean field theory of halo‘s: (RHB in the continuum) 11Li advantages: * residual interaction by pairing * self-consistent description * universal parameters * polarization of the core * treatment of the continuum problems: *center of mass motion *boudary conditions at infinity 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 27 Densities in Li-isotopes Density in Li-nuclei J. Meng and P. Ring , PRL 77, 3963 (1996) J. Meng and P. Ring , PRL 80, 460 (1998) rel. Hartree-Bogoliubov, parameter set NL2 density dependent δ−pairing (adjusted to Gogny) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 28 canonical basis in Li-isotopes * eigenstates of the density matrix * wavefunction has BCS-type canonical basis in Li Φ = Π (un + vn an+ an+ ) − n ε n = n h n , Δn = n Δ n J. Meng and P. Ring , PRL 77, 3963 (1996) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 29 Ne-halo’s halo’s in the Ne region Criteria for halo formation: * increasing level density * coupling to the continuum * low orbital angular momentum 17.11.2005 W. medium, PöschlINT, et Nov.2005 al., PRL Pairing degree of freedom in nuclei and the nuclear 30 79 (1997) 3841 Densities in Ne-isotopes NL3/D1S W. Pöschl et al., PRL 79 (1997) 3841 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 31 Giant halo in thehalo Zr region: Giant in Zr-nuclei J. Meng and P. Ring , PRL 80, 460 (1998) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 32 Relativistic QRPA for excited states: Small amplitude limit: δρph, δραh ground-state density RRPA matrices: δρhp, δρhα the same effective interaction determines the Dirac-Hartree single-particle spectrum and the residual interaction Interaction: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 33 IV-GDR in Sn-isotopes 17.11.2005 DD-ME2 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 34 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 35 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 36 Evolution of IV dipole strength in Oxygen isotopes RHB + RQRPA calculations with the NL3 relativistic mean-field plus D1S Gogny pairing interaction. Transition densities What is the structure of lowlying strength below 15 MeV ? Effect of pairing correlations on the dipole strength distribution 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 37 Mass dependence of GDR and Pygmy dipole states in Sn isotopes. Evolution of the low-lying strength. Isovector dipole strength in 132Sn. Nucl. Phys. A692, 496 (2001) GDR Distribution of the neutron particle-hole configurations for the peak at 7.6 MeV (1.4% of the EWSR) 17.11.2005 Pygmy state exp Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 38 allowed β-decay : * Important points: - the tail of the GT-strength distribution at low energies - the position of specific single particle levels (i.e. effective mass) - effective pairing force in the T=1 and T=0 channel. - in simple QRPA the lifetimes are too big * Possible methods to improve the results: - coupling to surface vibrations (difficult and beyond mean field) - use of a tensor coupling in the ω-channel (one phenom. param.) - T=0 pairing force with Gaussian character (one phen. parameter) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 39 The nucleon effective mass m*: m* represents a measure of the density of states around the Fermi surface nonrelativistic mean-field models relativistic mean-field models conventional RMF models effective mass: m*/m=0.8 ± 0.1 Dirac mass: mD=m+S(r) effective spin-orbit splittings + nuclear matter binding 0.55m ≤ mD ≤ 0.60m 0.64m ≤ m* ≤ 0.67m 17.11.2005 mass: m*=m-V(r) small density of states -> overestimated β-decay lifetimes Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 40 tensor omega-nucleon coupling enhances the spin-orbit interaction scalar and vector self-energies can be reduced DD-ME1 DD-ME1* mD/m 0.58 0.67 m*/m 0.66 0.76 T. Niksic et al, PRC 71, 014308 (2005) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 41 N≈82 region: Cadmium isotopes: π1g9/2 level is partially empty T=0 pairing has large influence on the ν1g7/2->π1g9/2 transition which dominates the β-decay process T. Niksic et al, PRC 71, 014308 (2005) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 42 An increase of the T=0 pairing partially compenstates for the fact that the density of states is still rather low T. Niksic et al, PRC 71, 014308 (2005) νh9/2->πh11/2 17.11.2005 G. Martinez-Pinedo and K. Langanke, PRL 83, 4502 (1999) Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 43 Correlations beyond mean field • Conservation of symmetries by projection before variation • Motion with large amplitude by Generator Coordinates • Coupling to collective vibrations - shifts of single particle energies - decay width of giant resonances 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 44 Halo wave function in the canonical basis: |CN|2 2 17.11.2005 4 6 8 10 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 N 45 Projected Density Functionals Ψ N N ˆ ˆ ( = P Φ = δ N − N) Φ = projected denstiy functional: ˆ Pˆ N Φ Φ H E N [ρˆ , κˆ ] = N ˆ Φ P Φ ∫ dϕ iϕ (Nˆ − N ) e Φ 2π density dependent interactions !!! analytic expressions projected HFB-equations (variation after projection): ⎛ hˆ N ⎜ N* ⎜- Δ ⎝ Δˆ N ⎞⎛U k (r ) ⎞ ⎛U k (r ) ⎞ ⎟ ⎟⎟ Ek ⎟⎟ = ⎜⎜ ⎜ N * ⎟⎜ ˆ - h ⎠⎝ Vk (r ) ⎠ ⎝ Vk (r ) ⎠ J.Sheikh and P. Ring NPA 665 (2000) 71 17.11.2005 hˆ N δE N = δρˆ N E δ Δˆ N = δκˆ Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 46 Halo-formation in Ne-isotopes pairing energy [MeV] 0 projected unprojected -5 pairing energies -10 -15 -20 -25 binding energy / A [MeV] -5.5 -6.0 binding energies -6.5 -7.0 -7.5 -8.0 rms-radii [fm] 4.0 rms-radii neutrons 3.5 protons 3.0 28 30 32 34 36 38 40 L. Lopes, PhD Thesis, TUM, 2002 A 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 47 Generator Coordinate Method (GCM) ˆ ˆ δΦ H − qQ Φ = 0 Constraint Hartree Fock produces wave functions depending on a generator coordinate q GCM wave function is a superposition of Slaterdeterminants Hill-Wheeler equation: with projection: 17.11.2005 Ψ = ∫ dq [ q H q' q = Φ(q ) ∫ dq f (q) q ] − E q q' f (q' ) = 0 N ˆI ˆ Ψ = ∫ dq f (q)P P q Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 48 GCM without projection: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 49 GCM-wave functions of the lowest states 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 50 Ang. momentum projected energy surfaces: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 51 Vibrational Couplings: energy dependent self-energy: RPA-modes mean field = pole part μ + + μ single particle strength: 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 52 209Bi Distribution of single-particle strength in 1,0 1,0 0,6 0,4 0,2 0,0 -8 -6 -4 -2 0 2 4 0,2 Bi 2f5/2 0,4 0,2 -2 0 2 4 E, MeV -4 -2 0 2 4 6 8 E, MeV 0,6 17.11.2005 0,4 1,0 209 0,8 0,0 0,6 6 E, MeV 1,0 Bi 1i13/2 0,8 0,0 Spectroscopic factor Spectroscopic factor Spectroscopic factor Bi 1h9/2 0,8 Spectroscopic factor 209 209 6 8 10 209 Bi 2h11/2 0,8 0,6 0,4 0,2 0,0 10 12 14 E, MeV Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 16 18 53 7 6 RMF RMF + PVC EXP 5 E, MeV 4 1h9/2 3 2f7/2 2 1i13/2 1 3p3/2 2f5/2 3p1/2 0 Level scheme for 17.11.2005 207 Pb Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 54 Contributions of complex cofigurations The full response contains energy dependent parts coming from vibrational couplings. Self energy g – phonon amplitudes (QRPA) ph interaction amplitude 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 55 Decay-width of the Giant Resonances E1 photoabsorption cross section 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 56 Conclusions There is a relatistic formulation of pairing Pairing is a totally non-relativistic phenomenon excellent separation of scales! RHB-model uses Gogny force in the pairing channel Applications in finite nuclei - rotational spectra (cranked RHB-theory) - halo phenomena (continuum RHB theory) - vibrational excitations (rel. QRPA) Method beyond mean field: - Projected funcionals (PDFT) - Generator Coordinate Method (GCM) - Particle-Vibrational Coupling (PVC) 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 57 Colaborators: A.V. Afanasjev (Mississippi) G. A. Lalazissis (Thessaloniki) D. Vretenar (Zagreb) E. Litvinova T. Niksic N. Paar (Obninsk) (Zagreb) (Zagreb) D. Pena J. König H. Kucharek E. Lopes M. Serra† 17.11.2005 Pairing degree of freedom in nuclei and the nuclear medium, INT, Nov.2005 58
© Copyright 2026 Paperzz