Tensor examples (9/28/16): Example 1: The metric tensor for Euclidean space using spherical coordinates is: 1 0 ππππππ = οΏ½0 ππ 2 0 0 0 οΏ½ 0 ππ 2 sin2 ππ a) Calculate the inverse metric b) Given a vector with components, π΄π΄ππ = (1, ππ, 0), calculate the one-form components π΄π΄ππ . c) Given a one-form with components, π΅π΅ππ = (0, βππ 2 , cos 2 ππ), calculate the vector components π΅π΅ππ . d) Calculate π΄π΄β β π΄π΄β. οΏ½β β π΅π΅ οΏ½β. e) Calculate π΅π΅ οΏ½β. f) Calculate π΄π΄β β π΅π΅ ππ g) Transform π΄π΄ to Cartesian coordinates. h) Transform π΅π΅ππ to Cartesian coordinates. οΏ½β. i) Re-calculate π΄π΄β β π΄π΄β and π΄π΄β β π΅π΅ 0 Example 2: Show that the metric tensor transforms like a type οΏ½ οΏ½ tensor. 2 Example 3: Given the transformation from Cartesian coordinates, where ππ is an arbitrary constant. a) Find the inverse transform. ππ = π₯π₯ ππ = π¦π¦ β πππ₯π₯ 2 1 0 οΏ½ to the new coordinate system b) Transform the metric, ππππππ = οΏ½ 0 1 c) Transform the Cartesian basis vectors, π€π€Μ and π₯π₯Μ. 2 d) Calculate οΏ½ππβππ οΏ½ Table of Contents Define the variables ............................................................................................................. Calculate the transformation matrix ........................................................................................ Transform A and calculate dot(A,A) ...................................................................................... Transform B and calculate dot(A,B) ....................................................................................... Define the variables clear syms r theta phi real x = r*sin(theta)*cos(phi); y = r*sin(theta)*sin(phi); z = r*cos(theta); assume(r, 'real') assume(theta>0&theta<pi) assume(phi>0&phi<2*pi) Calculate the transformation matrix L = jacobian([x,y,z],[r,theta,phi]) L = [ cos(phi)*sin(theta), r*cos(phi)*cos(theta), -r*sin(phi)*sin(theta)] [ sin(phi)*sin(theta), r*cos(theta)*sin(phi), r*cos(phi)*sin(theta)] [ cos(theta), -r*sin(theta), 0] Transform A and calculate dot(A,A) Artp = [1;r;0] Axyz = L*Artp A2 = simplify(dot(Axyz,Axyz),1000) Artp = 1 r 0 Axyz = cos(phi)*cos(theta)*r^2 + cos(phi)*sin(theta) cos(theta)*sin(phi)*r^2 + sin(phi)*sin(theta) - sin(theta)*r^2 + cos(theta) 1 1 1 1 2 A2 = r^4 + 1 Transform B and calculate dot(A,B) Brtp = [0;-1;(cot(theta)/r)^2] Bxyz = simplify(L*Brtp,1000) AdotB = simplify(dot(Axyz,Bxyz),1000) Brtp = 0 -1 cot(theta)^2/r^2 Bxyz = - r*cos(phi)*cos(theta) - (cos(theta)^2*sin(phi))/(r*sin(theta)) (cos(phi)*cos(theta)^2)/(r*sin(theta)) - r*cos(theta)*sin(phi) r*sin(theta) AdotB = -r^3 Published with MATLAB® R2016a 2 60β5. ARBITR ARY COORDINATES BOX 5.3βA 2D Example: Parabolic Coordinates q=3 q=2 eq eq the p = constant and q = constant curves for parabolic coordinates and the parabolic coordinate basis vectors at selected points. O ep β3 β2 β1 q=0 q q = β1 FIG. 5.4.βA diagram that displays p = β4 q=1 ei 0 q = β2 q = β3 1 2 3 4 Consider the parabolic coordinate system p,βq shown in figure 5.4. The transformation functions from ordinary cartesian coordinates x,βy to these coordinates are p (x, y) = x and q (x, y) = y - cx2 (5.23) where c is a constant. The inverse transformation functions are x ( p, q) = p and y ( p, q) = cp2 + q (5.24) Exercise 5.3.1.βShow that equations 5.24 are the correct inverse transformations. Exercise 5.3.2.βCalculate all eight partial derivatives 2xln /2x o and 2x n /2xlo . The metric equation for the cartesian coordinates x,βy is ds2 = dx2 + dy2 , so the metric tensor for these coordinates must be gab = < 1 0 F(5.25) 0 1 You can use equation 5.11 to show that the metric for the p,βq system is 1+ 4c2 p2 2cp G(5.26) glno = = 2cp 1
© Copyright 2026 Paperzz