Max Clique Cuts for (Standard) Quadratic Programs

IBM Analytics
Jonas Schweiger
CPLEX Optimization, IBM Italy
with Pierre Bonami, Andrea Lodi, Andrea Tramontani
Max Clique Cuts for (Standard) Quadratic Programs
1
c
2015
IBM Corporation
IBM Analytics
Table of Contents
1 (Extremely) Short introduction to Quadratic Programming
2 Max Clique Cuts
Separation
Connection to RLT
2
c
2015
IBM Corporation
IBM Analytics
Standard Quadratic Programs (SQP)
x T Qx
X
s. t.
xi = 1
min
i
x ≥0
(
)
X
x ∈ Rd xi = 1, x ≥ 0 = Standard Simplex
i
3
c
2015
IBM Corporation
IBM Analytics
Standard Quadratic Programs (SQP)
x T Qx
X
s. t.
xi = 1
−→
min
min
s. t.
i
hQ, Y i
X
xi = 1
i
x ≥0
x ≥0
Y = xx T
(
)
X
x ∈ Rd xi = 1, x ≥ 0 = Standard Simplex
i
3
c
2015
IBM Corporation
IBM Analytics
McCormick
Convex envelope of z = xy :
25
z ≥ xy + xy − xy
z ≥ xy + xy − xy
0
z ≤ xy + xy − xy
z ≤ xy + xy − xy
5
−25
−5
0
x
4
0
5 −5
y
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
5
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 1: Bound Constraints
Constraint 1: xi ≤ xi
Constraint 2: xj ≤ xj
5
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 1: Bound Constraints
Constraint 1: xi ≤ xi
Constraint 2: xj ≤ xj
5
0 ≤ xi − xi xj − xj
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 1: Bound Constraints
Constraint 1: xi ≤ xi
Constraint 2: xj ≤ xj
0 ≤ xi − xi xj − xj
= xi xj −xi xj − xi xj + xi xj
|{z}
Yij
5
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 1: Bound Constraints
Constraint 1: xi ≤ xi
Constraint 2: xj ≤ xj
0 ≤ xi − xi xj − xj
= xi xj −xi xj − xi xj + xi xj
|{z}
Yij
This is one of the 4 McCormick inequalities!
5
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 2
Constraint:
P
Variable: xj
5
i
xi = 1
X
i
xi xj = xj
|{z}
Yij
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 2
Constraint:
P
i
xi = 1
Variable: xj
X
i
xi xj = xj
|{z}
Yij
What happens if some Yij has not been generated?
X
i∈Vj
5
Yij +
X
xi xj = xj
i6∈Vj
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 2
Constraint:
P
i
xi = 1
Variable: xj
X
i
xi xj = xj
|{z}
Yij
What happens if some Yij has not been generated?
X
i∈Vj
5
Yij +
X
xi xj ≥ xj
i6∈Vj
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 2
Constraint:
P
i
xi = 1
Variable: xj
X
i
xi xj = xj
|{z}
Yij
What happens if some Yij has not been generated?
X
Yij +
i∈Vj
5
xi xj ≥ xj
i6∈Vj
i∈Vj
X
X
Yij +
X
i6∈Vj
xi xj ≤ xj
c
2015
IBM Corporation
IBM Analytics
Relaxation-Linearization-Technique (RLT)
Idea
1
Multiply linear constraints/variables
2
Reformulate using linearization variables
Example 2
Constraint:
P
i
xi = 1
Variable: xj
X
i
xi xj = xj
|{z}
Yij
What happens if some Yij has not been generated?
X
X
i∈Vj
i6∈Vj
X
X
i∈Vj
5
Yij +
Yij +
i6∈Vj
xi xj ≥ xj
xi xj ≤ xj
Use local bounds in
Branch&Bound-tree!
c
2015
IBM Corporation
IBM Analytics
Numbers - SQPs of size 30
CPLEX
Solution status
Optimal
RLT
108
140
2497.28
398.92
590.60
34.32
Separation time in seconds
Mean
Max
0.00
0.00
0.00
0.00
Number of cuts
Mean
Max
0.00
0.00
23.59
30.00
219202.41
34971.71
12054.18
1925.67
957.11
2496.79
62.09
127.86
Runtime in seconds
Mean
Shifted Geomean (s = 10)
Nodes
Mean
Shifted Geomean (s = 100)
Root gap
Mean
Max
150 randomly generated instances of size 30
Timelimit 7200 seconds
6
c
2015
IBM Corporation
IBM Analytics
Table of Contents
1 (Extremely) Short introduction to Quadratic Programming
2 Max Clique Cuts
Separation
Connection to RLT
7
c
2015
IBM Corporation
IBM Analytics
Maximum Clique as SQP
Theorem (Motzkin-Straus)
Let A be the adjacency matrix of a simple graph G and ω(G ) its clique
number (i.e. the size of a maximum clique in G ). Then
(
)
X
1
max x T Ax xi = 1, x ≥ 0 = 1 −
ω(G )
i
8
c
2015
IBM Corporation
IBM Analytics
Maximum Clique as SQP
Theorem (Motzkin-Straus)
Let A be the adjacency matrix of a simple graph G and ω(G ) its clique
number (i.e. the size of a maximum clique in G ). Then
(
)
X
1
max x T Ax xi = 1, x ≥ 0 = 1 −
ω(G )
i
Observations
8
c
2015
IBM Corporation
IBM Analytics
Maximum Clique as SQP
Theorem (Motzkin-Straus)
Let A be the adjacency matrix of a simple graph G and ω(G ) its clique
number (i.e. the size of a maximum clique in G ). Then
(
)
X
1
max x T Ax xi = 1, x ≥ 0 = 1 −
ω(G )
i
Observations
Identification of variables xi with nodes in the graph G = (V , E )
X
X
x T Ax =
2xi xj =
2Yij
(i,j)∈E
8
(i,j)∈E
c
2015
IBM Corporation
IBM Analytics
Maximum Clique as SQP
Theorem (Motzkin-Straus)
Let A be the adjacency matrix of a simple graph G and ω(G ) its clique
number (i.e. the size of a maximum clique in G ). Then
(
)
X
1
max x T Ax xi = 1, x ≥ 0 = 1 −
ω(G )
i
Proposition
If A is the adjacency matrix of some graph G and x in the standard
simplex the following inequality holds:
x T Ax ≤ 1 −
8
1
ω(G )
c
2015
IBM Corporation
IBM Analytics
Max Clique Cuts
Proposition
Every Max Clique cut
hY , Ai ≤ 1 −
1
ω(G )
is valid for the set
(
)
T
(x, Y ) | Y = xx ,
X
xi = 1, x ≥ 0
i
9
c
2015
IBM Corporation
IBM Analytics
Max Clique Cuts
Proposition
Every Max Clique cut
hY , Ai ≤ 1 −
1
ω(G )
is valid for the set
(
)
T
(x, Y ) | Y = xx ,
X
xi = 1, x ≥ 0
i
Can this be of any use?
9
c
2015
IBM Corporation
IBM Analytics
Max Clique Cuts
Proposition
Every Max Clique cut
hY , Ai ≤ 1 −
1
ω(G )
is valid for the set
(
)
T
(x, Y ) | Y = xx ,
X
xi = 1, x ≥ 0
i
Can this be of any use? Sure!
In the solution process Y only approximates xx T !
9
c
2015
IBM Corporation
IBM Analytics
Separation Problem
Problem
Let (x ∗ , Y ∗ ) be the solution of a suitable relaxation of an SQP. The
task is to find a graph G with adjacency matrix A such that
hA, Y ∗ i > 1 −
1
.
ω(G )
Bilevel Problem
First Level: Compute graph
Second Level: Computs its clique number
10
c
2015
IBM Corporation
IBM Analytics
Separation is MIP for fixed clique number k
Separate point (x ∗ , Y ∗ ):
1
k
X
|S| (|S| − 1)
s. t.
Aij ≤
− 1 for all S ⊆ V , |S| = k + 1
2
max
hA, Y ∗ i − 1 +
i,j∈S
i<j
11
Aij = Aji
for all i, j ∈ V
Aii = 0
for all i ∈ V
Aij ∈ {0, 1}
for all i, j ∈ V
c
2015
IBM Corporation
IBM Analytics
Max Clique Cuts for Complete Bipartite Graphs
M
M̄
Clique size 2
12
c
2015
IBM Corporation
IBM Analytics
Max Clique Cuts for Complete Bipartite Graphs
M
M̄
Clique size 2
Clean structure:
XX
1
2 xi xj ≤ 1 −
2
|{z}
i∈M i6∈M
12
Yij
c
2015
IBM Corporation
IBM Analytics
Separation: Complete Bipartite Graphs
Given: Relaxation solution (x ∗ , Y ∗ )
Find: Partition M such that
XX
i∈M i6∈M
13
2Yij∗ >
1
2
c
2015
IBM Corporation
IBM Analytics
Separation: Complete Bipartite Graphs
Given: Relaxation solution (x ∗ , Y ∗ )
Find: Partition M such that
XX
2Yij∗ >
i∈M i6∈M
1
2
Solve Integer Quadratic Program:
max
XX
2Yij∗ zi (1 − zj ) −
i∈V j∈V
1
2
s. t. z ∈ {0, 1}V
Value > 0: Found violated cut: M = { i | zi = 1}
Value ≤ 0: Y ∗ fulfills all clique cuts for bipartite graphs
13
c
2015
IBM Corporation
IBM Analytics
Numbers - SQPs of size 30
CPLEX
RLT
108
140
140
2497.28
398.92
590.60
34.32
548.51
29.02
Separation time in seconds
Mean
Max
0.00
0.00
0.00
0.00
1.23
22.30
Number of cuts
Mean
Max
0.00
0.00
23.59
30.00
74.00
288.00
219202.41
34971.71
12054.18
1925.67
4978.40
1156.95
957.11
2496.79
62.09
127.86
23.76
93.28
Solution status
Optimal
Runtime in seconds
Mean
Shifted Geomean (s = 10)
Nodes
Mean
Shifted Geomean (s = 100)
Root gap
Mean
Max
Bipartite
150 randomly generated instances of size 30
Timelimit 7200 seconds
14
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
X
xi
=
1
i∈V
15
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
RLT equalities
X
xi xj =
xj
i∈V
15
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
Sum up RLT equalities for M
XX
j∈M i∈V
15
xi xj =
X
xj
j∈M
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
Sum up RLT equalities for M
XX
xi xj =
j∈M i∈V
Reformulate
XX
j∈M i6∈M
15
X
xj
j∈M
xi xj =
X
j∈M
xj −
XX
xi xj
j∈M i∈M
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
Sum up RLT equalities for M
XX
xi xj =
j∈M i∈V
Reformulate
XX
X
xj
j∈M
xi xj =
X
j∈M i6∈M
j∈M
XX
X
xj −
XX
j∈M i∈M
2

Reformulate
j∈M i6∈M
15
xi xj =
j∈M
xi xj
xj − 
X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Connecting RLT and Max Clique Cuts
Fix set M and do some algebra:
Sum up RLT equalities for M
XX
xi xj =
j∈M i∈V
Reformulate
XX
X
xj
j∈M
xi xj =
X
xj −
j∈M i6∈M
j∈M
XX
X
XX
j∈M i∈M
2

Reformulate
j∈M i6∈M
xi xj =
xj − 
j∈M
With g (z) = z − z 2
j∈M i6∈M
15
xi xj = g 
X
xj 
j∈M

XX
xi xj

X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Any tangent on g will give an upper bound

XX
j∈M i6∈M
16
xi xj = g 

X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Constant Upper Bound

XX
j∈M i6∈M
16
xi xj = g 

X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Constant Upper Bound ⇒ Max Clique Cut

XX
j∈M i6∈M
16
xi xj = g 

X
j∈M
1
1
xj  ≤ =
4
2
1
1−
2
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Only one variable and tangent at 0

X X
j∈M i6∈M
16
xi xj = g 

X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Only one variable and tangent at 0 ⇒ RLT inequality

X
xi xj = g 

xj  ≤ xj
i6∈M
16
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Local Bounds on
P
j∈M

XX
j∈M i6∈M
16
xi xj = g 
xj

X
xj 
j∈M
c
2015
IBM Corporation
IBM Analytics
Looking at g (z) = z − z 2
g (z)
0.25
0
0
0.2
0.4
0.6
0.8
1
z
Local Bounds on
P
j∈M

XX
j∈M i6∈M
16
xi xj = g 
xj ⇒ secant approximation

X
j∈M

xj  ≥ g̃ 

X
xj 
Use local bounds in
Branch&Bound-tree!
j∈M
c
2015
IBM Corporation
IBM Analytics
Separation of tangents
Separate point (x ∗ , Y ∗ ):
Find set M such that
XX
j∈M i6∈M
Tangent at α =
17
P
i∈M
!
Yij∗ > g
X
xi∗
i∈M
xi∗ separates the point
c
2015
IBM Corporation
IBM Analytics
Separation of tangents
Separate point (x ∗ , Y ∗ ):
Find set M such that
XX
!
Yij∗ > g
j∈M i6∈M
Tangent at α =
max
XX
P
i∈M
X
xi∗
i∈M
xi∗ separates the point
Yij∗ zi (1 − zj ) − (α − α2 )
i∈V j∈V
s. t. α =
X
xi∗ zi
i∈V
z ∈ {0, 1}
Value > 0: Tangent at α is violated
Value ≤ 0: No violated tangent exists
17
c
2015
IBM Corporation
IBM Analytics
Separation of tangents
Separate point (x ∗ , Y ∗ ):
Find set M such that
XX
!
Yij∗ > g
j∈M i6∈M
Tangent at α =
max
XX
P
i∈M
X
xi∗
i∈M
xi∗ separates the point
Yij∗ zi (1 − zj ) − (α − α2 )
0.6
i∈V j∈V
s. t. α =
X
xi∗ zi
0.4
i∈V
z ∈ {0, 1}
0.2
Value > 0: Tangent at α is violated
Value ≤ 0: No violated tangent exists
17
0
0
0.2 0.4 0.6 0.8
1
c
2015
IBM Corporation
IBM Analytics
Numbers - SQPs of size 30
CPLEX
RLT
Bipartite
108
140
140
142
2497.28
398.92
590.60
34.32
548.51
29.02
470.30
35.16
Separation time in seconds
Mean
Max
0.00
0.00
0.00
0.00
1.23
22.30
320.59
7144.10
Number of cuts
Mean
Max
0.00
0.00
23.59
30.00
74.00
288.00
664.18
4380.00
219202.41
34971.71
12054.18
1925.67
4978.40
1156.95
1792.66
543.90
957.11
2496.79
62.09
127.86
23.76
93.28
14.70
93.28
Solution status
Optimal
Runtime in seconds
Mean
Shifted Geomean (s = 10)
Nodes
Mean
Shifted Geomean (s = 100)
Root gap
Mean
Max
Tangents
150 randomly generated instances of size 30
Timelimit 7200 seconds
18
c
2015
IBM Corporation
IBM Analytics
Numbers - SQPs of size 30
CPLEX
RLT
Bipartite
Tangents
TanGap
108
140
140
142
144
2497.28
398.92
590.60
34.32
548.51
29.02
470.30
35.16
403.75
30.99
Separation time in seconds
Mean
Max
0.00
0.00
0.00
0.00
1.23
22.30
320.59
7144.10
103.44
3218.00
Number of cuts
Mean
Max
0.00
0.00
23.59
30.00
74.00
288.00
664.18
4380.00
489.99
3037.00
219202.41
34971.71
12054.18
1925.67
4978.40
1156.95
1792.66
543.90
1789.36
542.01
957.11
2496.79
62.09
127.86
23.76
93.28
14.70
93.28
14.72
93.28
Solution status
Optimal
Runtime in seconds
Mean
Shifted Geomean (s = 10)
Nodes
Mean
Shifted Geomean (s = 100)
Root gap
Mean
Max
150 randomly generated instances of size 30
Timelimit 7200 seconds
19
c
2015
IBM Corporation
IBM Analytics
Numbers - SQPs of size 50
CPLEX
RLT
Bipartite
Tangents
TanGap
51
124
128
140
140
15973.21
6765.49
4323.70
314.59
3814.38
248.47
2233.79
286.07
1850.86
206.38
Separation time in seconds
Mean
Max
0.00
0.00
0.00
0.00
12.46
353.10
1885.63
24156.00
1465.41
23491.70
Number of cuts
Mean
Max
0.00
0.00
39.84
50.00
168.30
1534.00
1778.76
8690.00
1159.55
3552.00
286841.90
102931.16
13882.70
3393.86
5931.25
1694.21
4228.04
746.12
4110.92
710.99
1543.18
3997.98
57.33
101.71
22.93
93.73
14.21
93.73
14.27
93.73
Solution status
Optimal
Runtime in seconds
Mean
Shifted Geomean (s = 10)
Nodes
Mean
Shifted Geomean (s = 100)
Root gap
Mean
Max
150 randomly generated instances of size 50
Timelimit 21600 seconds
20
c
2015
IBM Corporation
IBM Analytics
Heuristic Separation
Remember: Every graph will do!
21
c
2015
IBM Corporation
IBM Analytics
Heuristic Separation
Remember: Every graph will do!
Support graph of Y ∗
E = (i, j) | Yij∗ > 0, i 6= j
Compute clique number with graph lib
21
c
2015
IBM Corporation
IBM Analytics
Heuristic Separation
Remember: Every graph will do!
Support graph of Y ∗
E = (i, j) | Yij∗ > 0, i 6= j
Compute clique number with graph lib
Lifting
Adding edges is allowed as long as the clique number does not increase.
→ Stronger Cuts
21
c
2015
IBM Corporation
IBM Analytics
Heuristic Separation
Remember: Every graph will do!
Support graph of Y ∗
E = (i, j) | Yij∗ > 0, i 6= j
Compute clique number with graph lib
Lifting
Adding edges is allowed as long as the clique number does not increase.
→ Stronger Cuts
Clique reduction
Removing one edge per clique reduces the clique number by 1.
→ More cuts
21
c
2015
IBM Corporation
IBM Analytics
Generalization
Theorem
(
)
T
Y | Y = xx ,
X
xi = 1, x ≥ 0
i
22
c
2015
IBM Corporation
IBM Analytics
Generalization
Theorem
(
)
T
Y | Y = xx ,
X
αi xi ≤ β, x ≥ 0
i
22
c
2015
IBM Corporation
IBM Analytics
Generalization
Theorem
For every graph G = (V , E ) and α ≥ 0, the cut
X
1
2αi αj xi xj ≤ β 2 1 −
ω(G )
|{z}
(i,j)∈E
Yij
is valid for
(
)
T
Y | Y = xx ,
X
αi xi ≤ β, x ≥ 0
i
22
c
2015
IBM Corporation
IBM Analytics
Numbers on Quadratic Knapsack
min x T Qx
s. t. ax ≤ b
x ∈ [0, 1]
Solved in Root
Root Gap
Mean
Shifted Geomean (s = 0.5)
Max
23
CPLEX
RLT
Bipartite
6 / 150
25 / 150
39 / 150
5.65
1.99
66.94
0.29
0.22
2.00
0.11
0.10
0.89
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
Max Clique Cuts can reduce number of nodes and running time
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
Max Clique Cuts can reduce number of nodes and running time
Max Clique Cuts can be separated (fast)
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
Max Clique Cuts can reduce number of nodes and running time
Max Clique Cuts can be separated (fast)
Max Clique Cuts have connections to RLT methodology
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
Max Clique Cuts can reduce number of nodes and running time
Max Clique Cuts can be separated (fast)
Max Clique Cuts have connections to RLT methodology
Max Clique Cuts ROCK!
24
c
2015
IBM Corporation
IBM Analytics
Conclusions
Max Clique Cuts
Max Clique Cuts can considerably improve relaxation
Max Clique Cuts can reduce number of nodes and running time
Max Clique Cuts can be separated (fast)
Max Clique Cuts have connections to RLT methodology
Max Clique Cuts ROCK!
Outlook
Recognize structure in general quadratic problems
24
c
2015
IBM Corporation
IBM Analytics
Jonas Schweiger
CPLEX Optimization, IBM Italy
with Pierre Bonami, Andrea Lodi, Andrea Tramontani
Max Clique Cuts for (Standard) Quadratic Programs
25
c
2015
IBM Corporation
IBM Analytics
Legal Disclaimer
c
IBM
Corporation 2015. All Rights Reserved.
The information contained in this publication is provided for informational purposes only. While efforts
were made to verify the completeness and accuracy of the information contained in this publication, it
is provided AS IS without warranty of any kind, express or implied. In addition, this information is
based on IBMs current product plans and strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to,
this publication or any other materials. Nothing contained in this publication is intended to, nor shall
have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or
altering the terms and conditions of the applicable license agreement governing the use of IBM
software.
References in this presentation to IBM products, programs, or services do not imply that they will be
available in all countries in which IBM operates. Product release dates and/or capabilities referenced
in this presentation may change at any time at IBMs sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or feature availability in any
way. Nothing contained in these materials is intended to, nor shall have the effect of, stating or
implying that any activities undertaken by you will result in any specific sales, revenue growth or other
results.
Performance is based on measurements and projections using standard IBM benchmarks in a controlled
environment. The actual throughput or performance that any user will experience will vary depending
upon many factors, including considerations such as the amount of multiprogramming in the user’s job
stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve results similar to those stated here.
IBM, the IBM logo, CPLEX and SPSS are trademarks of International Business Machines Corporation
in the United States, other countries, or both.
Intel, Intel Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.
Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both. Other
company, product, or service names may be trademarks or service marks of others.
26
c
2015
IBM Corporation