Why (your) mass isn’t gauge dependent Des Johnston Nielsen Identities Edinburgh, May 2010 Des Johnston Why (your) mass isn’t gauge dependent 1/36 Apologies and some justifications • It’s been a VERY long time since I’ve done PPT related stuff.. • The topic is something that has been picked over for many years • The Higgs (particle) is back on the agenda Des Johnston Why (your) mass isn’t gauge dependent 2/36 Plan of Talk • Symmetry breaking • Higgs mechanism • Quantum corrections, gauge fixing, effective potential • The problem (and the solution) • Other models - Standard, gravity... Des Johnston Why (your) mass isn’t gauge dependent 3/36 Form of Potential Spontaneously broken symmetry 1 λ V (|φ|2 ) = − µ2 |φ|2 + |φ|4 2 4! φ = (φ1 + iφ2 ) Des Johnston Why (your) mass isn’t gauge dependent 4/36 Goldstone bosons and all that • Complex scalar field theory 1 L(x) = ∂µ φ ∂ µ φ∗ − V (|φ|2 ) 2 • Minimum: φ0 = 6µ2 λ 1/2 • Take: φ(x) = φ0 + φ1 (x) + iφ2 (x) • Lagrangian: 21 (∂µ φ1 )2 − µ2 φ21 + 21 (∂µ φ2 )2 + . . . Des Johnston Why (your) mass isn’t gauge dependent 5/36 Abelian Higgs • Scalar electrodynamics - Lagrangian 1 1 L(x) = − Fµν F µν + Dµ φi Dµ φi − V (φ2 ) 4 2 Fµν = ∂µ Aν − ∂ν Aµ , φ2 = φ21 + φ22 Dµ = ∂µ + ieAµ • Same symmetry breaking as before 1 1 1 (∂µ φ1 )2 −µ2 φ21 + (∂µ φ2 )2 + e2 φ20 Aµ Aµ +eφ0 Aµ ∂µ φ2 +· · · 2 2 2 Des Johnston Why (your) mass isn’t gauge dependent 6/36 Abelian Higgs II • φ2 is surplus to requirements • Gauge invariance to the rescue φ(x) = φ(x) exp[iθ(x)] Aµ (x) = Aµ (x) + ∂µ θ(x) • Unitary gauge φ(x) = v + φ1 (x) • φ2 is “gauged away” Des Johnston Why (your) mass isn’t gauge dependent 7/36 Quantum Abelian Higgs • Scalar electrodynamics - Lagrangian in gory detail 1 1 1 − Fµν F µν + ∂µ φi ∂ µ φi −eij (∂µ φi )φj Aµ + e2 Aµ Aµ φ2 +V (φ2 ) 4 2 2 Fµν = ∂µ Aν − ∂ν Aµ , φ2 = φ21 + φ22 ij = Des Johnston 0 1 −1 0 Why (your) mass isn’t gauge dependent 8/36 Gauge fixing/regularization • Add (Rξ ) gauge fixing terms 1 1 1 − Fµν F µν + ∂µ φi ∂ µ φi −eij (∂µ φi )φj Aµ + e2 Aµ Aµ φ2 +V (φ2 ) 4 2 2 1 + ξB 2 + B(∂µ Aµ + eξvi φi ) + ∂µ ψ ∗ ∂ µ ψ − e2 ξψ ∗ ψij vi φj 2 • Use dimensional regularization/MS subtraction • vi = ij φi0 is ’t Hooft gauge Des Johnston Why (your) mass isn’t gauge dependent 9/36 The usual setup • Functional integral Z Z[J] = Z [DΦ] exp i d4 x [L(x) + JΦ] • Connected generating functional W [J] = −i~ ln Z[J] • One particle irreducible generating functional Γ[Φ̄] = W [J] − J Φ̄ Des Johnston Why (your) mass isn’t gauge dependent 10/36 Feynman diagrams 0 Some useful definitions before we start... vi = v ei , ei = (0, 1) φi0 = φ0 ηi , ηi = (1, 0) 1 m21 = λφ2 − µ2 2 1 2 m2 = λφ2 − µ2 6 DN = k 4 − k 2 (m22 − 2e2 ξvφ) + e2 φ2 (e2 ξ 2 v 2 + ξm22 ) Des Johnston Why (your) mass isn’t gauge dependent 11/36 Feynman diagrams I Propagators for the theory Ghost: i k 2 − e2 ij ξvi φj Scalar: iηi ηj i(k 2 − ξe2 φ2 ) (δij − ηi ηj ) + 2 DN k − m21 Gauge: kµ kν kµ kν −iC gµν − 2 − iD 2 k k C= 1 ξ(k 2 − m22 − e2 ξv 2 ) , D = k 2 − e 2 φ2 DN Des Johnston Why (your) mass isn’t gauge dependent 12/36 Feynman diagrams II Propagagators in the ’t Hooft gauge Ghost: k2 i − e2 ξφ2 Scalar: (k 2 − iηi ηj i (δij − ηi ηj ) + 2 2 2 k − m21 − ξe φ ) m22 Gauge: 1 −i 2 k − e 2 φ2 kµ kν kµ kν ξ gµν − 2 −i 2 2 2 k (k − e ξφ ) k 2 Des Johnston Why (your) mass isn’t gauge dependent 13/36 Feynman diagrams III Graphically: Des Johnston Why (your) mass isn’t gauge dependent 14/36 Feynman diagrams IV Vertices for the theory Scalar/Scalar/Gauge: −eij (k1 + k2 )µ Scalar/Ghost/Ghost: −ie2 ξvi ij Scalar/Gauge/Gauge: 2ie2 φi gµν Des Johnston Why (your) mass isn’t gauge dependent 15/36 Feynman diagrams V Vertices for the theory Des Johnston Why (your) mass isn’t gauge dependent 16/36 Effective Potential I • Quantum equivalent of classical potential • Should use this to discuss corrections to classical symmetry breaking picture • Done perturbatively using loop (i.e. ~) expansion V =i X 1 Γi ...i (0, . . . , 0)φi1 · · · φin n! 1 n n Des Johnston Why (your) mass isn’t gauge dependent 17/36 Effective Potential II V (1) ξ 3 = i d k ln(k 2 + e2 ξvφ) − ln(−k 2 + e2 φ2 ) 2 1 1 − ln(k 2 − m21 ) − ln DN 2 2 ∂V (1) ∂ξ Z 4 1 = − ieξφm22 2 Z d4 k (2v + φ)k 2 − vξe2 φ2 (k 2 + e2 ξvφ)DN Ugly, gauge parameter dependent Des Johnston Why (your) mass isn’t gauge dependent 18/36 And the mass too... • Masses, 2nd derivatives of (effective) potentials • Choose λ ∼ O(e4 ) (Coleman-Weinberg) m2(1) = m21 + Σ(1) (0) + m21 ∂Σ(1) (p2 ) ∂p2 1 m21 = λφ2 − µ2 2 Des Johnston Why (your) mass isn’t gauge dependent 19/36 Included Diagrams Work that can’t be avoided Des Johnston Why (your) mass isn’t gauge dependent 20/36 Excluded Diagrams Work that can be avoided Des Johnston Why (your) mass isn’t gauge dependent 21/36 And finally... Maybe not so ugly, but still gauge parameter dependent: ∂m2(1) ξ ∂ξ = 2 2 e2 ξλφ20 e ξφ0 ln 32π 2 M2 One loop correction to effective potential and Higgs mass look like they depend on ξ Des Johnston Why (your) mass isn’t gauge dependent 22/36 What’s going on here? • Effective potential and mass shouldn’t be gauge parameter dependent • Nielsen (1975) - don’t forget about implicit dependence • All would be well if ∂V ∂V + C(φ, ξ) =0 ∂ξ ∂φ ∂m2 ∂m2 ξ + C(φ, ξ) =0 ∂ξ ∂φ ξ Des Johnston Why (your) mass isn’t gauge dependent 23/36 What’s going on here? • Why is this a fix? • Minimum of effective potential at some φ̄ ∂V (φ, ξ) =0 ∂φ • Vmin stays the same under ξ → ξ + dξ V (φ̄ + δ φ̄, ξ + dξ) = V (φ̄, ξ) = Vmin ∂V dφ̄ ∂V + =0 ∂ξ dξ ∂ φ̄ Des Johnston Why (your) mass isn’t gauge dependent 24/36 Nielsen Identities • The man himself N. K. Nielsen - not H. B. Nielsen • Proved requisite identities exist using BRST symmetry Des Johnston Why (your) mass isn’t gauge dependent 25/36 (Standard) BRST symmetry I • “Modern” way of dealing with gauge invariance • Valid for the gauge-fixed Lagrangian δ2 = 0 δψ ∗ = B , δψ = 0 , δB = 0 , δAµ = ∂µ ψ δφi = eij ψφj Des Johnston Why (your) mass isn’t gauge dependent 26/36 (Standard) BRST symmetry II • The BRST identities are encapsulated in: Z S(Γ) = 4 d x δΓ δΓ δΓ δΓ δΓ δΓ δΓ + + +B ∗ µ δρ δAµ δKi δφi δσ δψ δψ =0 • ρµ , Ki , σ sources for δAµ , δφi and δψ ∂V • Nothing that looks like ∂Γ ∂ξ → ∂ξ • Trick, Piguet and Sibold Des Johnston Why (your) mass isn’t gauge dependent 27/36 Extended BRST symmetry • Introduce a BRST transform on the gauge parameter δξ = χ • This requires extra terms in the Lagrangian too 1 + χψ ∗ B + eχψ ∗ vi φi 2 • The BRST identity now reads S(Γ) + χ Des Johnston ∂Γ =0 ∂ξ Why (your) mass isn’t gauge dependent 28/36 Extended BRST symmetry II • Differentiate w.r.t. χ, substitute for B, set everything but φ to zero Z δΓ(O(x)) δΓ eξvi φi δΓ(O(x)) ∂Γ 4 d x − − =0 ∗ δKi δφi ξ δψ ∂ξ • Take constant field limit ξ ∂V − ∂ξ Z d4 x δΓ(O(x)) ∂V =0 δKi ∂φ • Explicit expression for C(φ, ξ) Z − d4 x Des Johnston δΓ(O(x)) δKi Why (your) mass isn’t gauge dependent 29/36 Some observations • We have seen that ξ ∂V ∂V + C(φ, ξ) =0 ∂ξ ∂φ is true • Also true for other physical quantities with the same C(φ, ξ) • Applies in non-Abelian theories (e.g. standard model) • Also in gravity Des Johnston Why (your) mass isn’t gauge dependent 30/36 Matters of gravity... • Suppose you are made of scalar, bosonic matter • And you are happy to be described by 1-loop quantum gravity L(x) = − + 2√ −g(R + Λ) + Lgf κ2 √ 1 −g[(∇µ φ)(∇ν φ)g µν − m2 φ2 ] 2 • Then there is a Nielsen identity ξ ∂m2 ∂m2 + η µν τ (φ, ξ) =0 ∂ξ ∂hµν • Interpreted as ξ → ξ + dξ η µν → (1 + τ dξ)η µν Des Johnston Why (your) mass isn’t gauge dependent 31/36 Matters of higher derivative gravity I • A renormalizable, asymptotically free theory of gravity exists (Stelle 1977) • Unfortunately, it is also non-unitary L(x) = √ −g γ Λ 1 1 R + 4 + βR2 − 2 (Rµν Rµν − R2 ) κ2 κ α 3 • Spin two propagator 2 1 1 D(q ) = 2 − α γ q 2 q 2 − (α2 γ/κ2 ) 2 Des Johnston Why (your) mass isn’t gauge dependent 32/36 Matters of higher derivative gravity II • Massive ghost decays • General recipe D(q 2 ) = (D0 (q 2 )−1 − Σ(q 2 ))−1 • Large N 2 1 D(q ) = 2 α γ q 2 [1 − AN q 2 ln(q 2 /L2 )] 2 • Poles at q 2 = 0, q = r exp(iθ) with r ∼ γ/N κ2 • Loop corrections ∂M 2 /∂ξ 6= 0 Des Johnston Why (your) mass isn’t gauge dependent 33/36 Summary • At first sight it looks as if physical quantities depend on gauge parameters in a loop expansion • They don’t really, you are saved by: ∂V ∂V + C(φ, ξ) =0 ∂ξ ∂φ ∂m2 ∂m2 ξ + C(φ, ξ) =0 ∂ξ ∂φ ξ • C(φ, ξ) explicitly calculable from (extended) BRST identities Des Johnston Why (your) mass isn’t gauge dependent 34/36 A reference or ten N.K. Nielsen, Nucl. Phys. B 101 (1975) 173. R. Fukuda and T. Kugo, Phys. Rev. D 13 (1976) 3469. I.J.R. Aitchison and C.M. Fraser, Ann. Phys. 156 (1984) 1. D. Johnston, Nucl. Phys. B 253 (1985) 687; 283 (1987) 317; 297 (1988) 721. S. Ramaswamy, Nucl. Phys. B 453 (1995) 240. O. M. Del Cima, D. H.T. Franco and O. Piguet, Nucl.Phys.B 551 (1999) 813. P. Gambino and P. A. Grassi, Phys. Rev. D 62 (2000) 076002. L. P. Alexander and A. Pilaftsis, J.Phys.G 36 (2009) 045006. Des Johnston Why (your) mass isn’t gauge dependent 35/36 THE END :) Des Johnston Why (your) mass isn’t gauge dependent 36/36
© Copyright 2026 Paperzz