pre-IB Mathematics ANSWERS Krzysztof Sikora April 11, 2016 CC BY SA c 2013 - 2016 by Krzysztof Sikora. Copyright This work is made available under the terms of the Creative Commons Attribution-ShareAlike 4.0 license, http://creativecommons.org/licenses/by-sa/4.0/. If you decide to use some of my concepts, I would like you to email me ([email protected]) so that I will be able to notify you about major changes and new versions of the textbook. I would be happy to share some more of my materials with you. You will not have to pay anything for that. All I expect from you is that you accept the conditions of a free licence that are explained below. CC BY: Creative Commons is a nonprofit organization that enables the sharing and use of creativity and knowledge through free legal tools. For this work I decided to use by-nc-sa licence. Attribution - You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. ShareAlike - If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. 2 C Contents 1 Numbers 1.1 Primes, factors and divisibility . . . . . . . . . . . . . . 1.2 Fractions and decimals . . . . . . . . . . . . . . . . . . . 1.3 Subsets of real numbes set . . . . . . . . . . . . . . . . . 1.4 Absolute value . . . . . . . . . . . . . . . . . . . . . . . 1.5 Percentages . . . . . . . . . . . . . . . . . . . . . . . . . 1.6 Approximations. Decimal places and significant figures. 1.7 Exponents and roots . . . . . . . . . . . . . . . . . . . . 1.8 Expantions. Pascal’s triangle and binomial coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Logic 5 5 6 6 6 7 7 8 9 10 3 Sets 3.1 Sets and subsets . . . . . . . 3.2 Venn diagrams . . . . . . . . 3.3 Operations on sets . . . . . . 3.4 Chapter review (sets & logic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 12 14 15 4 Statistics 4.1 Types of data . . . . . . . 4.2 Averages, range, quartiles 4.3 Groued data, frequencies . 4.4 Miscelaneous problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 16 17 17 19 5 Linear function 5.1 Basic concepts . . . . . . . . . . . . . . . . 5.2 Slope-intercept equation of a line . . . . . . 5.3 General equation of a line . . . . . . . . . . 5.4 Vectors . . . . . . . . . . . . . . . . . . . . 5.5 Simultaneous equations . . . . . . . . . . . 5.6 Applications of linear equations and vectors 5.7 Chapter review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 20 20 21 22 23 24 24 6 Functions 6.1 Basic properties . . . . . . . . . . . . . 6.2 Transformations of graphs of functions 6.3 Equations and inequalities . . . . . . . 6.4 chapter review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 27 35 35 7 Quadratic function 7.1 Solving quadratic equations . . . . . . . . . . . . 7.1.1 Factorisation . . . . . . . . . . . . . . . . 7.1.2 Completing the square . . . . . . . . . . . 7.1.3 Quadratic formula . . . . . . . . . . . . . 7.2 Parabola . . . . . . . . . . . . . . . . . . . . . . . 7.3 Applications of quadratics . . . . . . . . . . . . . 7.3.1 Quadratic inequalities . . . . . . . . . . . 7.3.2 Problems involving quadratics . . . . . . 7.3.3 Investigating graphs of rational functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 38 38 39 39 40 40 40 41 41 8 Trigonometry 8.1 Degrees and radians . . . 8.2 Trigonometric ratios . . . 8.3 Trigonometric functions . 8.4 Trigonometric equations . 8.5 Trigonometry in geometry 8.6 Arcs, sectors, segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 42 42 43 44 45 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . . . . Contents 9 Geometry 9.1 Polygons . . . . . . . . . 9.2 Circles . . . . . . . . . . 9.3 Similarity . . . . . . . . 9.4 Solid geometry . . . . . 9.5 Miscellaneous problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 46 46 47 47 47 10 Numbers II 10.1 Factorials and binomial theorem . . . . . 10.2 Logarithms . . . . . . . . . . . . . . . . . 10.2.1 Algebra of logarithms . . . . . . . 10.2.2 Logarithmic equations . . . . . . . 10.2.3 Aplications . . . . . . . . . . . . . 10.3 Absolute value equations and inequalities 10.4 Complex numbers . . . . . . . . . . . . . 10.5 Mathematical induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 47 48 48 48 48 49 49 49 11 Quadratics and polynomials 11.1 Vieta’s formulae for quadratics 11.2 Algebraic fractions . . . . . . . 11.3 Equation of a circle . . . . . . . 11.4 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 49 50 50 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 1 Numbers 1.1 Primes, factors and divisibility Q1. 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 (6) 3 (11) 3 (2) co-prime (7) co-prime (12) 13 (3) co-prime (8) co-prime (4) 7 (9) 26 Q2. (1) 3 (13) 12 (10) 2 (5) co-prime (14) co-prime Q3. (1) HCF: 6, LCM: 90 (12) HCF: 1, LCM: 4008003 (2) HCF: 16, LCM: 96 (13) HCF: 2, LCM: 2002000 (3) HCF: 12, LCM: 72 (14) HCF: 17, LCM: 595 (4) HCF: 18, LCM: 216 (15) HCF: 14, LCM: 210 (5) HCF: 18, LCM: 630 (16) HCF: 7, LCM: 245 (6) HCF: 8, LCM: 168 (17) HCF: 22, LCM: 1452 (7) HCF: 7, LCM: 504 (18) HCF: 125, LCM: 5000 (8) HCF: 9, LCM: 648 (19) HCF: 25, LCM: 10000 (9) HCF: 8, LCM: 448 (20) HCF: 16, LCM: 640 (10) HCF: 99, LCM: 198 (21) HCF: 24, LCM: 1728 (11) HCF: 1, LCM: 4006002 (22) HCF: 13, LCM: 936 Q4. (1) 2 × 32 (2) 23 × 3 (13) 24 × 5 (25) 54 (14) 34 (26) 23 × 53 2 (37) 232 (38) 26 × 32 (3) 2 × 3 × 5 (15) 2 × 3 × 5 (27) 3 × 11 × 61 (4) 25 (16) 32 × 11 (28) 22 × 23 (39) 33 × 52 (5) 22 × 32 (17) 32 × 13 (29) 25 × 3 (40) 22 × 132 (6) 2 × 3 × 7 (18) 27 (30) 22 × 52 (7) 24 × 3 (19) 26 × 3 (31) 24 × 32 (8) 2 × 33 (20) 22 × 72 (32) 2 × 34 (42) 32 × 112 (9) 23 × 7 (21) 23 × 33 (33) 25 × 7 (43) 32 × 53 2 (10) 3 × 7 6 2 4 (22) 2 × 11 (11) 2 (23) 2 × 3 × 7 (12) 23 × 32 (24) 24 × 52 (41) 7 × 11 × 13 (34) 2 × 3 × 5 2 (35) 172 (36) 22 × 112 (44) 23 × 172 (45) 22 × 32 × 52 × 7 Q5. (1) 1 (5) 3 (9) 6 (13) 3 (2) 2 (6) 5 (10) 4 (14) 7 (3) 3 (7) 3 (11) 1 (15) 0 (4) 2 (8) 0 (12) 6 (16) 10 5 Chapter 1. Numbers Q6. (1) 3,5 (4) 3,9 (7) 2,4 (10) 2,4 (2) 2,3,4,5,6,10 (5) none (8) 2,5,10 (11) 2,3,4,6,9 (3) 3,5 (6) 2 (9) 5 (12) 2,3,6 1.2 Fractions and decimals Q7. (1) recurring (6) terminating (11) terminating (16) recurring (2) terminating (7) recurring (12) recurring (17) recurring (3) terminating (8) terminating (13) recurring (18) terminating (4) terminating (9) recurring (14) terminating (19) terminating (15) recurring (20) terminating (19) 3 19 30 (5) terminating (10) terminating 6 Q8. (1) 1 25 (7) 12 18 (13) 14 14 99 (2) 2 17 20 (8) 75 78 (14) (9) 2 94 (15) 4 (10) 3 33 (16) (11) 5 59 (17) (12) 7 19 33 (18) (3) (4) (5) (6) 1 160 3 38 5 58 7 11 25 Q9. (1) 0.625 (5) 0.024 107 333 202 4 333 68 5 333 23 45 19 1 90 (9) 0.2̇7̇ (20) 5 173 330 1 (21) 6 66 523 (22) 1 1665 817 (23) 7 3330 1 (24) 9 1665 (13) 0.416̇ (2) 0.1875 (6) 0.7̇ (10) 0.2̇85714̇ (14) 0.13̇6̇ (3) 0.875 (7) 0.2̇ (11) 0.83̇ (15) 0.0̇6̇ (4) 0.275 (8) 0.1̇8̇ (12) 0.27̇ (16) 0.1̇35̇ 1.3 Subsets of real numbes set Q10. (1) R \ Q (4) Q (7) Q (10) R \ Q (2) R \ Q (5) Q (8) Q (11) R \ Q (3) Q, Z, N (6) Q (9) Q, Z, N (12) R \ Q 1.4 Absolute value Q11. (1) 7.2 (2) 3.4 (3) 3.4 − π √ (4) 5 − 2 (5) 3√ 3−2 2 Q12. (1) 4.5; 0.5 (2) (3) 1 3; 1 1 1 4 ; −1 4 Q13. (1) −1; −5 (2) −1; −3 32 (3) 1 34 ; 1 14 √ (11) 3 2 − 4 √ (12) 2 7 − 5 √ (13) 5 2 − 7 √ (14) 3 9 − 2 √ (15) 5 − 2 6 (6) 10 − π 2 √ (7) 2 3 − 3 (8) 16 (9) 8 (10) 0 √ (16) 2 10 − 6 (17) π − 3 (18) 13 √ (19) 7 − 4 3 √ (20) 10 − 3 11 (7) − 53 ; 1 45 (10) −0.5; 5.5 (8) no solution (11) (9) −1; −1 32 (12) no solution (4) 3 45 ; 2 15 (7) no solution (10) (5) 1 31 ; − 13 (8) 0; − 67 (11) no solution (4) −7; −3 (5) (6) (6) 2 31 1 34 ; −1 14 − 25 ; −3 35 (9) Q14. 6 7 5 9; 9 1 5 11 ; 11 11 12 23 ; 23 (12) no solution Chapter 1. Numbers (1) − 21 , 12 1 2, 1 (5) (3) 0, 2 (6) (2) Q15. (1) −1.5, 3 (2) − 34 , 8 1.5 (4) − 23 , 2 (7) −4, 0 1 3 6, 2 2 5, 4 (8) 2, 4 23 (9) −7, −2.5 (3) −1, 3 (5) 0, 2.4 (4) 1, 7 (6) − 32 ≤ x ≤ (7) − 14 1 2 (8) −1, 97 Percentages Q16. (1) 48 (7) 22.4 (2) 67 Q21. (1) 28.9 (3) 42 (2) 0.65 (4) 68 (3) 65 (5) 65 (4) 14% Q28. 1188 zl (5) 12% Q29. 20% Q22. (1) 18% Q30. 10% Q17. (1) 6% (2) 25% Q25. 550 Q26. 528 zl Q27. 182.50 zl (3) 18% (2) 12.5% (4) 14.2%(14 16 %) (3) 82% (5) 225% (4) 84% Q32. 60 zl (6) 240% (5) 76% Q33. 3120 zl Q31. 10% Q18. (1) 65 (6) 34% (2) 85 (7) 42% (3) 32 (8) 22.4% Q35. 5.60 zl (4) 480 (9) 456 Q36. 25% (5) 25 (10) 255 Q37. increased by 12.5% (11) 70 Q19. (1) 16% (2) 16.7% (12) 85 Q38. 301 zl (3) 16% (13) 65 Q39. 18% (4) 16.7% (14) 165 (5) 25% (15) 65 (6) 20% (16) 11.9 Q41. on average, 2.04% (17) 44.1 Q42. 8.25% Q20. (1) 33.3% Q40. 378 zl (18) 143 (2) 7.2 Q43. 7.96% (19) 25% (3) 237.5% Q44. 800, final smaller by 14.5% (20) 20% (4) 15.2 1.6 Q34. 850 zl (5) 77.8% Q23. 45 Q45. 150% (6) 22.4 Q24. 14% Q46. 300, final smaller by 4% Approximations. Decimal places and significant figures. Q47. (1) 102.44 (2) 2.01 Q48. (1) 10 (2) 20 (3) 3.61 (5) 14.14 (7) 0.01 (4) 3.90 (6) 30.00 (8) 0 (3) 6710 (5) 30 (7) 650 (4) 340 (6) 430 (8) 110 7 Chapter 1. Numbers Q49. (1) 2000 (3) 12000 (5) 0 (7) 43000 (4) 4000 (6) 130000 (8) 62000 (4) 0.0004 (7) 0.0021 (10) 0.00208 (2) 20000 (5) 4000000 (8) 0.00025 (11) 0.000255 (3) 0.002 (6) 25 (9) 25.4 (12) 45600000 (2) 6521000 Q50. (1) 20000 Q51. (1) 2335000 ≤ a < 2345000 (7) 18.95 ≤ a < 19.05 (2) 932.5 ≤ a < 933.5 (8) 32450 ≤ a < 32550 (3) 4045000 ≤ a < 4055000 (9) 0.09985 ≤ a < 0.09995 (4) 0.01225 ≤ a < 0.01235 (10) 0.002455 ≤ a < 0.002465 (5) 0.004495 ≤ a < 0.004505 (11) 0.4045 ≤ a < 0.4055 (6) 1995 ≤ a < 2005 (12) 0.06995 ≤ a < 0.07005 1.7 Exponents and roots Q52. (1) 5 (6) 3 (11) (2) 3 (7) 7 (12) (3) 6 (8) 2 (13) (4) 3 (9) (14) (5) 2 (10) 2 3 5 2 (15) 4 3 7 2 3 2 5 3 7 3 Q53. (1) 25 > 52 (7) (− 21 )5 < −( 21 )6 (2) 25 > (−2)5 (8) (−2)5 < 24 (3) (−2)5 < (−2)4 (9) (−2)5 < (−2)6 (4) 40 04 (10) (−2)5 > −26 (5) (−2)5 > (−2)7 (11) (−2)5 = −25 (6) ( 12 )5 ( 12 )6 (12) (−2)4 > −24 > > (16) 3 2 (17) 5 2 (18) 4 3 (19) 3 2 (8) 57 (15) 219 (22) 5−2 (2) 36 (9) 32 (16) 38 (23) 74 (3) 777 (10) 33 (17) 9−1 (24) 3−7 (4) −211 (11) 220 (18) 90 = 1 (25) 3−13 (5) 230 (12) 416 (19) 21 = 2 (26) 2−19 (6) −235 (13) 228 (20) 26 (27) 5−17 (7) 36 (14) 311 (21) 2−35 (28) 2−4 (13) n3 (19) b−3 3 2 (20) x−2 Q54. (1) 314 Q55. h < f = g < b = d < a = e < c < i = j Q56. f = j < g = i < a = b < c < d = e < h Q57. (1) x3.5 (2) a 2 3 (7) b5 (8) c 14 3 (14) n (3) a6 (9) y 3 (15) a5 (21) y −5.5 8 9 4 (16) a3 (22) t 3 8 (23) w 3 1 (4) a 3 (10) d (5) a5 (11) s 5 (17) p−3 (6) x5 (12) t2 (18) s− 3 14 Q58. 8 1 (24) a−7 Chapter 1. Numbers (1) x12 3 2 2a 2 (5) 4 (2) 3p (6) 3s (3) 3x (7) (4) 2 2 3x (6) (4) 32 (8) (2) (3) (11) 3 (12) 64 27 2 5 16 81 27 512 (5) 16 9 1 32 (10) 3 2n (8) 6w Q59. (1) 0.00001 (9) 2a (7) (9) 1000000 (12) 16 3 3 16 16 49 (11) 2 5 (12) 81 16 (13) 1 3 (10) (11) √ Q60. (1) 2 (2) 4 (3) 1 8 (4) 27 (5) 81 16 (2) (3) (4) 2 2 √ 3 3 √ 6 3 √ 6 2 Q62. (1) 6 √ (2) 4 2 (3) 15 Q63. (1) (2) 1.8 √ √ (14) 1024 √ (5) 2 3 √ (6) 3 2 √ (7) 2 7 √ (8) 7 2 √ Q61. (1) 3 3 9 4 1 4 1 5 2 3 (6) (7) (8) (9) (10) (9) 3−1 √ 14 3 3 √ (13) √ (10) 5 3 (11) (12) √ (7) 6 2 (5) 28 √ (6) 12 2 (8) 0 10 5 √ √ 5 6 2 √ 15 2 2 √ (4) −4 3 (14) 10 2 √ (15) 30 2 √ (10) −7 3 √ (11) −4 2 √ (12) 10 3 √ (9) 6 5 √ (3) 4 3 − 6 √ (4) −7 − 4 3 2+1 7 3 2p 3 2 2a 1 5 40 s (5) −1 √ √ (6) 92 2 − 3 3 √ √ (7) −3 2 − 14 (8) √ √ 2 10− 15 5 Expantions. Pascal’s triangle and binomial coefficients. Q64. (1) x2 − 2x + 1 (6) x2 − 10x + 25 (11) x2 − 43 x + (2) x2 + 4x + 4 (7) x2 − 3x + 2.25 (12) 4x2 − 4x + 1 2 2 (3) x − 6x + 9 (8) x + 5x + 6.25 2 2 (9) x + x + (4) x + 8x + 16 2 (5) x − 8x + 16 2 (10) x + 4 3x (6) (3) 4x2 s2 − 12xs4 + 9s6 (7) (4) 9a4 b6 + 12a3 b7 + 4a2 b8 (8) Q67. (1) (2) (3) (4) (5) x+1 (19) 25x − 20x + 4 2 (20) 36x2 + 12x + 1 6x + 4 (5) 4p2 q 4 − 12p4 q 3 + 9p6 q 2 (2) x6 + 4x4 y 2 + 4x2 y 4 √ Q66. (1) 6 + 4 2 √ (2) 11 − 6 2 √ (3) 43 − 24 3 1 2 4x − 9 2 4x + 2 (18) (15) 9x + 12x + 4 Q65. (1) a4 − 2a2 b + a2 b2 (17) 2 (14) 4x − 12x + 9 4 9 (16) 4x2 + 20x + 25 2 (13) 9x + 6x + 1 1 4 + 4 9 √ (4) 30 − 12 6 √ (5) 122 − 56 3 √ (6) 182 + 96 3 s2 t4 3 3 4 2 4 − 2s t + 4s t 9 2 2 4 2 10 2 6 4 a c + 2a c + 9 a c 4 9 6 6 4 3 9 a − a c + 16 a c √ (7) 99 + 60 2 √ (8) 201 − 126 2 √ (9) 304 − 60 15 a2 + 2ab + 2ac + b2 + 2bc + c2 a4 − 2a2 b + 4a2 c + b2 − 4bc + 4c2 a4 + 2a3 b + 3a2 b2 + 2ab3 + b4 a4 + 2a3 − a2 − 2a + 1 25x2 y 2 + 20x2 y + 4x2 − 30xy 2 − 12xy + 9y 2 (6) (7) (8) (9) (10) 9 √ (10) 114 + 36 10 √ (11) 55 − 22 6 (12) 49 2 9a2 b2 + 12a2 bc + 4a2 c2 − 6ab2 c − 4abc2 + b2 c2 4a4 b2 + 12a3 b3 + 9a2 b4 + 4a2 b + 6ab2 + 1 9s2 t2 − 12s2 t + 4s2 − 12st3 + 8st2 + 4t4 √ √ √ 9+4 2+4 3+2 6 √ √ √ 9+4 2−4 3−2 6 √ √ √ (11) 10 + 2 6 + 2 10 + 2 15 √ √ √ (12) 11 + 6 2 − 4 3 − 2 6 √ (7) 54 + 30 3 √ √ (8) 11 2 + 9 3 √ √ (9) 9 3 − 11 2 √ √ (10) 132 3 − 162 2 √ √ (11) 21 3 + 15 6 √ √ (12) 12 6 − 20 2 Q68. (1) a3 − 3a2 c + 3ac2 − c3 (2) a6 + 6a4 b + 12a2 b2 + 8b3 (3) a6 − 3a5 b + 3a4 b2 − a3 b3 (4) a6 + 6a5 + 12a4 + 8a3 (5) 8x6 y 3 + 36x5 y 4 + 54x4 y 5 + 27x3 y 6 (6) 27x6 y 3 − 54x5 y 4 + 36x4 y 5 − 8x3 y 6 Q69. (1) a4 − 4a3 c + 6a2 c2 − 4ac3 + c4 (2) x4 + 8x3 y + 24x2 y 2 + 32xy 3 + 16y 4 √ (3) 193 − 132 2 (4) a5 − 5a4 c + 10a3 c2 − 10a2 c3 + 5ac4 − c5 (5) x5 + 10x4 y + 40x3 y 2 + 80x2 y 3 + 80xy 4 + 32y 5 √ (6) 843 − 589 2 √ (7) 485 + 198 6 (8) 64a6 b6 − 576a6 b5 + 2160a6 b4 − 4320a6 b3 + 4860a6 b2 − 2916a6 b + 729a6 Q70. (1) 63 (2) 0 Q71. (1) (2) (3) (4) (5) (6) (7) (3) 30 (5) 15 16 (7) 11 (4) 58 (6) 28 (8) 24 P20 r=1 r P22 2r Pr=1 n r=1 r P26 r=1 (2r − 1) P10 r r=0 2 P9 3−r r=1 3 P40 r=1 (5 − 2r) (8) (9) (10) (11) (12) (13) (14) P20 r=1 (4r − 1) P16 r=1 (13 − 3r) P17 1+r r=1 ( 3 ) P11 r r=0 (−2) P8 r r+1 ) r=1 (3 (−1) P12 −r r=0 (−2) P20 (−1)r+1 ) r=1 ( r Q72. −4320 Q81. −1 + 3x − 10x3 Q73. −20 Q82. −1 − 5x + 40x3 Q74. 560 3 Q75. 160 (15) P25 (16) P11 (17) P99 (18) P26 (19) P21 (20) P18 r=1 r2 r=1 (r 3 (−1)r+1 ) r r=1 r+1 r=1 (−1)r+1 2r r=1 (r(r + 1)) 2r r=1 (2r−1)(2r+1) Q83. 2 + 12x − 21x2 Q84. 360 Q76. 840 Q77. −489888 Q85. − 1567 9 Q78. 2048x11 − 16896x10 + 63360x9 Q86. 2 Q79. −1152x2 + 1152x − 512 Q87. ±3 Q80. 8 − 20x + 18x2 Q88. −1 Chapter 2 Logic Q1. (1) For every real number there exists an integer smaller than the real number. (2) All natural odd powers of −1 are equal −1. (3) All natural even powers of −1 are equal 1. (4) There exists such natural number n that each real number s is greater or equal to the sum of n and s. 10 Chapter 2. Logic (5) For every positive real number there is exactly one real number whose square is equal to the number considered. (6) If 2 divides a natural number then 4 divides it, too. (7) There is a natural number such that if it is divisible by 2 then it is divisible by 4, too. (8) There exists a natural number that is not divisible by 2 but it is divisible by 4. (9) For every integer its power of 2 is an integer, too. (10) A number is rational whenever its power of 2 is rational. (10) ∀x ∈ R (x < x2 ) ⇒ (x < 0), FALSE Q2. (1) ∀n ∈ N n ∈ Z or n ∈ N ⇒ n ∈ Z, TRUE (2) ∀n ∈ Z n ∈ Q or n ∈ Z ⇒ n ∈ Q, TRUE (11) ∀x, n ∈ Z x2n > 0, FALSE (3) ∃x ∈ R ¬(n > 0) ∧ ¬(n < 0), TRUE (4) ∃n ∈ N ¬(n > 0), TRUE (12) ∃x, n ∈ Z x2n+1 ≤ 0, TRUE (13) ∀x, y ∈ R (x < y) ⇒ (x2 < y 2 ), FALSE (5) ∀n ∈ Z (4 | n) ⇒ (2 | n), TRUE (14) ∃x ∈ R+ x < x2 ,TRUE (6) ∀n ∈ Z ((2 | n) ∧ (3 | n)) ⇒ (6 | n), TRUE (7) ∀x ∈ R+ ∃y ∈ R x = y 2 , TRUE (15) ∀x ∈ R+ x > x2 ,FALSE (8) ∀x ∈ Z+ ∃y ∈ Z x = y 2 , FALSE (16) ∀n ∈ Z (2 | n) ⇒ (4 | n2 ), TRUE (9) ∀x, y ∈ R ∃z ∈ Z+ z < |x − y|, FALSE (17) ∀n ∈ Z (4 | n) ⇒ (16 | n2 ), FALSE Q3. (1) tautology (6) tautology (11) tautology (16) tautology (2) contradiction (7) tautology (12) tautology (17) tautology (3) tautology (8) tautology (13) tautology (18) tautology (4) tautology (9) tautology (14) tautology (10) tautology (15) tautology Q4. (1) tautology (2) tautology (3) tautology (4) tautology (5) tautology (6) tautology Q5. (1) ¬p ∧ ¬q (5) ¬p ∨ q (9) ¬p ∧ ¬q (5) contradiction (7) contradiction (13) ∃x (¬p ∨ q) (2) p ∧ ¬q (6) p ∨ q (10) ∃x ¬p (14) ∀x (p ∧ q) (3) p ∧ q (7) p ∧ q (11) ∃x (p ∧ ¬q) (15) ∀x (p ∧ ¬q) (4) ¬p ∨ ¬q (8) ¬p ∧ ¬q (12) ∃x (¬p ∧ ¬q) (16) ∀x (¬p ∨ ¬q) Q6. (1) (2) (3) (4) (5) (6) (7) ∃x ∈ R (x2 ≤ 0) ∃x ∈ N ((x ≤ 0) ∧ (x 6= 0)) ∃x ∈ Z ((2 | x) ∧ (4 - x2 )) ∃x ∈ Z ((2 - x) ∧ (2 | x)) ∃x ∈ N ((x < 0) ∨ (x2 ≤ x)) ∃x ∈ Z ((x > 0) ∧ (x 6∈ N)) ∃x ∈ R ((x ≥ 0) ∧ (x ≤ 0)) (8) ∃x ∈ R ((x2 ≤ x − 1) ∨ (x2 < −x)) (9) ∀x ∈ N (x > 0) (10) ∀x ∈ N ((x ≤ 0) ∧ (x 6= 0)) (11) ∀x ∈ Z ((x2 + 4x = 0) ∧ (x ≥ 0)) (12) ∀x ∈ R ((x2 6∈ Z) ∨ (x ∈ Z)) (13) ∀x ∈ R ((x2 ≥ 0) ∧ (|x| ≥ 1)) Q7. (1) Quadrilateral ABCD is neither a rhombus nor a rectangle. (2) Quadrilateral ABCD is not a parallelogram or it does not have an axis of symmetry. (3) A triangle has all sides of equal length and not all of its angles are equal to 60◦ . (4) There is an integer that has exactly three prime factors and that is not a square of an integer. (5) There is an integer that is divisible by 2 while its square is not divisible by 4. (6) There is an integer divisible by 6 whose square is not divisible by 36. (7) There is an integer divisible by 2 whose square is not divisible by 4. (8) There is an integer divisible by both 2 and 3 that is not divisible by 6. (9) There exists a real number that is neither positive nor negative. (10) There exists a real number whose square is negtive. Q8. 11 (1) ¬(p ∧ q) (4) p ∨ ¬q (7) ¬(p ∧ ¬q) (10) ¬p ∧ ¬q ∧ p (2) ¬p ∧ q (5) p ∨ q (8) ¬(¬p ∨ q) (11) ¬p ∨ ¬q ∧ p (3) p ∧ q (6) ¬(p ∨ q) (9) ¬(¬p ∧ ¬q) (12) ¬p ∧ ¬q ∨ p Chapter 3 Sets 3.1 Sets and subsets Q1. (1) {−5, −4, 4, 5} (7) {−1, 0, 1, 3} (2) {−1, 0, 1} (8) {−1, 0, 1, 2, 3, 4} (3) {−4, −3, −2, 2, 3, 4} (9) {−3, −1, 1} (4) {−4, −3, 3, 4} (10) {−2, − 13 , 1} (5) {0, 1, 2, 3, 4} (11) ∅ (6) {2, 3, 4, 5} (12) {−8, −7, −6, −5, −4, −3, −2, −1, 0, 1, 2} Q2. (1) {0, 1, 2, 3, 4} (7) ∅ (2) {−8, −7, −6, −5, −4, −3, −2, −1} (8) {−5, −4, −3, −2, −1} (3) {−2, −1, 0, 1, 2} (9) {0, 1, 2, 3} (4) ∅ (10) {−5, −4, −3, 3, 4, 5} (5) Z (11) {−6, 0, 6} (6) N (12) {−8, −4, 0, 4, 8} Q3. ∅, {1}, {3}, {1, 3} Q4. ∅, {2}, {5}, {8}, {2, 5}, {2, 8}, {5, 8}, {2, 5, 8} Q5. {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} Q6. {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 3}, {3, 4} Q7. {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5} Q8. {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5}, {2, 3, 4, 5} Q9. {0, 2}, {0, 4}, {0, 8}, {0, 2, 4}, {0, 2, 8}, {0, 4, 8}, {0, 2, 4, 8} Q10. 15 Q11. 16 Q12. 8 3.2 Venn diagrams A Q13. (1) B A A ∩ B0 (2) 12 B A ∪ B0 Chapter 3. Sets A B A B (A ∩ B 0 )0 (3) A C (11) B A A0 ∪ (B ∩ C) B (A \ B)0 (4) A B C (12) A (A ∪ B) \ C B (5) (A ∪ B) \ (A ∩ B) A B C (13) A A ∪ (B \ C) B (A ∪ B) \ A (6) A B C (14) (7) A (A ∩ B) \ (A ∪ B) A (A ∩ B) \ C B B C (15) A ∩ (B \ C) B \ (A ∩ B) (8) A A B C (9) A C C (16) (A ∪ B) ∩ C 0 B (10) B A (A ∩ B) ∪ C A \ (B ∩ C) B C (17) A \ (B ∪ C) Q14. (1) true (3) false (5) false (7) true (9) true (2) false (4) false (6) true (8) true (10) true Q15. (1) ski 25 Q16. (1) biology 9 38 − x (2) 25 snowboard 6 (3) 17 17 (2) 11 physics (3) 27 x 14 − x 9 + 38 − x + x + 14 − x = 50 13 Chapter 3. Sets Q17. (1) 6 (2) 2 Q18. 1 Q20. (1) 28 (2) 3 Q21. (1) 12 (2) 14 Q19. (1) 3 (2) 8 Q22. (1) 160 (2) 12 ............................................................................................................... Q23. (1) 20 (2) 4 (3) 11 Q24. (1) 30 (2) 0 (3) 10 Q25. (1) 12 (4) 2 (2) 1 Q26. Biology - 5, Chemistry - 1, English - 2 Q27. 40 Q28. 4 Q29. 74 3.3 Operations on sets Q30. (1) A = {1, 3, 5, 7, 9, 11} (8) {0, 2, 4, 6, 8, 10, 12} (15) {12} (2) B = {0, 2, 4, 6, 8, 10} (9) {1, 3, 5, 7, 9, 11, 12} (16) 6 (3) {1, 5, 7, 11} (10) {0, 1, 2, . . . , 10, 11} (17) 6 (4) {3, 9} (11) {3, 9} (18) 4 (5) ∅ (12) {12} (19) 0 (6) {3, 9} (13) {12} (20) 8 (7) {0, 6} (14) {12} (21) 9 Q31. (1) 11 (2) {2, 4, 12} (3) {3, 7, 9} (4) {0, 6, 8, 10, 14} Q32. (1) 11 (2) {3, 6, 18} (3) {4, 10, 13} (4) {0, 9, 12, 15, 21} Q33. (1) (2) (3) (4) (5) (6) (7) false false true false true false 11 (14) {±14, ±13, ±11, ±10, ±7, ±5, ±2, ±1} (8) 7 (9) 3 (10) {±15, ±9, ±6, ±3} (15) B (11) {−8, −4, 4, 8} (16) C (12) ∅ (17) A (13) ∅ (18) C (6) {2, 4, 8, a, b, c, d}, a, b, c, d ∈ U \ C Q34. (1) 2 (2) 10 (7) {1, 12} (3) 8 (8) {12} (4) {6, 8, a, b}, where a, b ∈ U \ A (5) {1, 6, 10, a, b, c}, a, b, c ∈ B (9) {1, 12} Q35. (1) [−5, 5] −7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11 (2) ] − ∞, −5[∪]5, 6] −7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11 (3) [6, 11[ −7−6−5−4−3−2−1 0 1 2 3 4 5 6 7 8 9 10 11 14 Chapter 3. Sets Q36. (1) {−3} −8−7−6−5−4−3−2−1 0 1 2 3 4 (2) [−8, −3[ −8−7−6−5−4−3−2−1 0 1 2 3 4 (3) ] − 3, 2[ −8−7−6−5−4−3−2−1 0 1 2 3 4 Q37. (1) ] − ∞, 0[∪]0, 3[∪]3, 9[ −2−1 0 1 2 3 4 5 6 7 8 9 (2) {−2, 5} −2−1 0 1 2 3 4 5 6 7 8 9 (3) ] − 2, 0[∪]3, 5[∪[7, 9] −2−1 0 1 2 3 4 5 6 7 8 9 (4) ] − ∞, −2[∪]0, 3[∪]5, 7[ −2−1 0 1 2 3 4 5 6 7 8 9 Q38. (1) ∅ (2) ] − ∞, −3] −3−2−1 0 1 2 3 4 5 6 7 (3) [−1, 3] −3−2−1 0 1 2 3 4 5 6 7 (4) ] − 3, 1]∪]3, 5]∪]7, +∞] −3−2−1 0 1 2 3 4 5 6 7 (5) ] − 3, −1] −3−2−1 0 1 2 3 4 5 6 7 (6) B =] − 1, 3]∪]5, 7] −3−2−1 0 1 2 3 4 5 6 7 (7) ]3, 5]∪]7, +∞[ −3−2−1 0 1 2 3 4 5 6 7 (8) ] − ∞, −3] ∪ [2, +∞[ −3−2−1 0 1 2 3 4 5 6 7 (9) ] − 3, −1] −3−2−1 0 1 2 3 4 5 6 7 (10) ] − ∞, −3] −3−2−1 0 1 2 3 4 5 6 7 Q39. (1) (A ∪ B)0 = A0 ∩ B 0 (5) A0 ∪ B 0 = (A ∩ B)0 (2) (A ∩ B)0 = A0 ∪ B 0 (6) A0 ∩ B 0 = (A ∪ B)0 (3) (A0 ∩ B)0 = A ∪ B 0 (7) A0 ∪ B = (A ∩ B 0 )0 (4) (A ∪ B 0 )0 = A0 ∩ B (8) A ∩ B 0 = (A0 ∪ B)0 3.4 Chapter review (sets & logic) Q1. (1) tautology (2) tautology Q2. (1) True: all values but p = q = r = 0. (2) False: p = q = r = 0. Q3. (1) (i) (ii) (iii) (iv) ∀x ∈ Z (2 | x) ⇒ (4 | x) ∃x ∈ Z (2 | x) ∧ (4 - x) There exists an even number that is not divisible by 4. negation (2) (i) (ii) (iii) (iv) ∀x ∈ Z (2 | x) ⇒ (4 | x2 ) ∃x ∈ Z (2 | x) ∧ (4 - x2 ) There exists an even number whose square is not a multiple of 4. the statement 15 (3) (i) (ii) (iii) (iv) ∀x ∈ R ∃n ∈ Z n2 ≥ x3 ∃x ∈ R ∀n ∈ Z n2 < x3 There is a real number such that its cube is larger than a square of any integer. the statement (4) (i) (ii) (iii) (iv) ∀n ∈ Z ((12 | n) ∨ (18 | n)) ⇒ (9 | n) ∃n ∈ Z ((12 | n) ∨ (18 | n)) ∧ (9 - n) There is an integer that is a multiple of 12 or of 18 but not of 9. negation Q8. e.g. (A\(B∪C))∪(C \(A∪B)) or (A∪C)\(A∩C)\B Q4. (1) (¬p ∧ ¬q) ∨ r (2) ¬(p ∧ (¬q ∨ r)) Q5. (1) (2) (3) (4) (5) (6) (7) (8) ] − ∞, −4] ∪ {−3} {−1, 0, 1, 2} {3} {0, 1, 2, 3} D =] − ∞, −5[∪[3, +∞[ [−5, 3[ ] − ∞, −4[∪[−3, 3[∪]3, +∞[ [−5, 3[ W R 25 − 16 = 9 16 16 − 9 = 7 (30 − 7 = 23) Q9. Q6. {a}, {◦}, {4}, {a, ◦}, {a, 4}, {◦, 4}, {a, ◦, 4}. E has 32 subsets. M U 6−x Q7. A0 ∩ (B ∪ C)0 A 18 − (10 − x) B 0 x 4−x C 22 − (12 − x) (A \ B)0 ∩ C S A 8−x B Q10. 15 − (22 − (12 − x)) From total no of students equal 38 we obtain x = 3 and hence: (a) 13 (b) 3 C (c) 2 Chapter 4 Statistics 4.1 Q1. (1) (2) (3) (4) Types of data qualitative quantitative quantitative quantitative (5) (6) (7) (8) quantitative qualitative quantitative quantitative (9) (10) (11) (12) 16 qualitative quantitative quantitative quantitative (13) quantitative Chapter 4. Statistics Q2. (1) (2) (3) (4) (5) 4.2 Q3. (6) (7) (8) (9) (10) discrete continuous(?) discrete continuous(?) continuous(?) (11) (12) (13) (14) (15) continuous continuous continuous continuous continuous (16) discrete discrete continuous discrete discrete continuous (17) continuous Averages, range, quartiles (1) (2) (3) (4) (5) (6) (7) (8) mean 142 1(0.9997) 8.5 1000(999.75) 3.25 83.4(83.375) 1.82 3.1 Q4. (1) (7) (2) (3) Q5. 169cm mode 141 0.995 7 998 4 90 3 3 median 141 1 8.5 999.5 3.5 84.5 2 3 (3) (1) Q6. 61.6kg Q1 141 0.995 7 998 2 79.5 0 2 Q2 143 1.003 9.5 1001 4 88.5 3 4 (4) (5) (5) (8) Q7. 187.2cm Q10. (1) 55.5 range 5 0.01 3.5 5 5 18 3 6 (7) (4) (8) (6) Q9. 64.1kg (3) 46.7 Q12. 161.4cm Q14. (1) 172.5 (6) (2) Q8. 169cm (2) 56.5 Q11. 2 min 22 sec I.Q.R. 2 0.008 2.5 3 2 9 3 2 Q13. 71.3kg (2) 170.5 (3) 22 Q15. (1) mean: 73.8, mode: none, median: 84; mean takes all data into consideration, median is not affected by the ”outliers” (2) mean: 46.6, mode: 25, median: 22; median best, mode reasonable, too (3) mode: trainers (the only) Q16. (1) 70 (2) 65 (3) 79 Q17. 164, 178 Q18. (1) (2) (3) (4) (5) a = 3, b = 5 a = 7, b = 8 a = 3, b = 9 a = 3, b = 6 or a = 4, b = 5 a = 13, b = 14, c = 16, d = 17, e = 19 Q19. mode = 1.99zl, median = 2.05zl, mean = 2.14zl Q20. test 1 2 4.3 Q21. h 152 153 157 160 163 165 168 range 71 62 mode 21 46 median 44 67 Q1 29.5 48.5 Q3 76.5 81.5 I.Q.R. 47 33 Groued data, frequencies f 4 2 3 3 6 3 3 h×f 608 306 471 480 978 495 504 ∴ mean = 3842 24 ≈ 160 17 mean 53.2 66.7 Chapter 4. Statistics Q22. a = 12, b = 4. Q23. 6 Q24. 25 Q25. a = b = 5, median = 11 Q26. a = 5, b = 8 Q27. (1) 3 (2) 6 Q28. (1) 6 (2) 15 (3) 5 (5) 1 (4) Q1 = 5, Q3 = 6 (6) 5.44 (3) 15 (5) 4 (4) Q1 = 13, Q3 = 17 (6) 13.4 Q29. a = b = 9 Q30. (1) class 130 < h ≤ 140 140 < h ≤ 150 150 < h ≤ 160 160 < h ≤ 170 170 < h ≤ 180 180 < h ≤ 190 f 2 14 31 33 16 4 100 h×f 270 2030 4805 5445 2800 740 16090 h (approx.) 135 145 155 165 175 185 h h ≤ 140 h ≤ 150 h ≤ 160 h ≤ 170 h ≤ 180 h ≤ 190 c.f. 2 16 47 80 96 100 (2) 160 < h ≤ 170 (3) 150 < Q1 ≤ 160, 160 < Q3 ≤ 170 (4) 161 cm Q31. (1) (6),(7) (4) (5) (6) (a) (b) (c) (d) (5) (6) (7) no (2) (7), 6 (3) (7), 4 7 0 4 1 (8) yes (9) (a) (b) (c) (d) Q32. (1) A: 2.2, B: 2.45 (2) A&B: 2 (3) A: 68, 85, 94, 100, B: 8, 25, 59, 75, 88, 100 (4) median Q1 Q3 A 2 1 3 B 2 1.5 3.5 A B (5) 0 (6) T - true, N A (a) T (b) N (c) T (d) N (e) T (f) T 1 2 3 4 5 - does not have to be true, F - false B T N T T T T Q33. 18 5 0 3 1 Chapter 4. Statistics (a) FALSE Q34. (1) 4 (b) FALSE (c) FALSE (2) 68 (3) 43-16=27 Q35. (1) 50 (2) 17 (3) 35 (4) 68 (10) (5) 30th : 81 − 83, 70th : 119 − 120 (6) 12 (11-13) (7) 125 (8) 75 (9) 50% time 0 < t ≤ 20 20 < t ≤ 40 40 < t ≤ 60 60 < t ≤ 80 80 < t ≤ 100 100 < t ≤ 120 120 < t ≤ 140 140 < t ≤ 160 160 < t ≤ 180 180 < t ≤ 200 (d) FALSE no of students 2 4 11 18 25 25 18 11 4 2 (11) 100 minutes time 0<t≤4 4<t≤8 8 < t ≤ 12 12 < t ≤ 16 16 < t ≤ 20 20 < t ≤ 24 24 < t ≤ 28 28 < t ≤ 32 32 < t ≤ 36 36 < t ≤ 40 Q36. (1) 20-21 minutes (2) 11 (3) 24 (4) 16 (5) mean ≈ 20 no of students 1 2 3 4 5 5 4 3 2 1 Q37. (1) 22hrs (2) 8 or 7 (3) 15th : 17, 65th : 24 (4) 27 (5) 16 (6) c = 16, d = 27 Q38. (1) 164cm (2) 173-156=17 (3) 173 (4) 154 (5) c = 154, d = 173 4.4 Miscelaneous problems Q39. (1) mean = 171, range = 12 (2) mean = 172, range = 10 or 12 or 14 Q43. a = 6, b = 7, c = 7, d = 10 Q44. a = 4, b = 6, c = 8, d = 8 (3) mean = 171.5, range = 10 or 12 or 14 Q45. a = 6, b = c = d = 8, e = f = g = 9 Q40. 960 ml Q46. x ∈ {8, 9, 10, 11, 12, 13}, y = 14 − x Q41. (1) 3.25l (2) 4.5l Q42. (1) 26.40 zl (2) 24 zl Q47. x = 3 Q48. median =9.4, Q1 = 9.2, Q3 = 9.85, range = 1.3, I.Q.R. = 0.65, mode = 9.2, mean ≈ 9.468 19 Q49. 4,6,6,6,7 (4) 86 Q50. 3,4,5,6,6,7 (5) 67 (6) c = 67, d = 86 Q51. 2,4,5,5,6,6,7 Q52. grade 4 5 6 7 min no 1 0 3 2 (7) 76kg max no 2 3 5 2 Q54. (1) 4000AM (2) 1900AM (3) 30th : 3400AM, 70th : 4900AM (4) 6500AM Q53. (1) 76kg (5) 2800AM (2) 10-11kg th (3) 30 : 72kg, 70 (6) c = 2800, d = 6500 th : 79kg (7) 4400AM Chapter 5 Linear function 5.1 Basic concepts Q1. (1) (6, 7) (2) (8, −1) Q2. (1) 5 (2) 13 (3) 10 5.2 (3) (3, −5) (5) (7, −1.5) (7) (0.5, 6.5) (4) (−1, 2) (6) (−8, −3) (8) (34, −7) (4) (5) (6) √ 4 2 √ 3 10 √ 5 2 √ (7) 5 5 √ (8) 4 5 √ (9) 10 2 (10) 17 Slope-intercept equation of a line Q3. (1) (2) 4 3 − 43 (3) 1 (4) 1 3 (5) − 13 (7) −2 (6) 2 (8) − 32 (6) e.g.(−1, −3), (1, −4), (3, −5) Q4. (1) e.g.(3, 2), (6, 4), (9, 6) (2) e.g.(2, −3), (4, −6), (6, −9) (7) e.g.(2, 0), (6, 3), (10, 6) (3) e.g.(2, 0), (3, 2), (4, 4) (8) e.g.(2, 0), (5, −5), (8, −10) (4) e.g.(−3, −2), (−2, −5), (−1, −8) (9) e.g.(−5, −5), (−2, 2), (1, 9) (10) e.g.(−3, 3), (2, 1), (7, −1) (5) e.g.(6, 0), (10, 1), (14, 2) Q5. Use a GDC to check your answers. Q6. (1) yes (2) yes (3) no (4) yes (5) yes (6) yes (7) yes (8) no (9) yes (10) yes Q7. (1) 7 (2) 6.5 (3) 3 (4) 0 (5) 5.5 (6) −3 (7) 14 (8) −6 (9) 6 (10) −4.5 Q8. (1) y = 2x − 3 (2) y = −3x − 1 (3) y = 41 x + 2 (4) y = − 12 x − 4 (5) y = 43 x − 6 (6) y = − 35 x + 5 (7) y = 37 x + 3 (8) y = − 52 x + 2 (9) y = 23 x + 1 (10) y = − 23 x + 3 20 Chapter 5. Linear function Q9. (1) y = 2x − 2 (2) y = −3x + 3 (3) y = 14 x − 32 (4) y = − 12 x + (5) y = 34 x − 21 (6) y = − 53 x + 5 2 (7) y = 73 x + 1 (8) y = − 52 x − (9) y = 23 x + 3 1 3 (10) y = − 23 x − 4 8 5 Q10. (1) y = − 12 x + 3 (2) y = 13 x − 7 (3) y = −4x − 14 (4) y = 2x + 6 (5) y = − 43 x + 12 (6) y = 53 x + 5 52 (7) y = − 73 x − 1 67 (8) y = 25 x − 20 12 (9) y = − 23 x + 12 Q11. (1) m > 0 (2) m > −1 (3) m > 2 (4) m > 2.5 Q12. (1) m > 4 (2) m < − 43 (3) no such m (4) −2 < m < 2 Q13. (10) y = 23 x + 3 23 (i) 91.4 km h (ii) between 1.5 and 2hrs: 96 km h (iii) between 1.5 and 2.5hrs: 95 km h 5.3 General equation of a line Q14. (1) y = − 32 x − 2 12 (2) y = −2x + 1 13 (3) y = 12 x + 1 12 (4) y = − 43 x − 31 (5) y = 3x − 2 (6) y = 53 x − 1 31 (7) y = 25 x − 3 12 (8) y = − 37 x − 12 (9) y = − 14 x + 12 (10) y = 32 x + 1 13 Q15. (1) 6x − 3y − 4 = 0 (2) 3x + y − 2 = 0 (3) x − 4y + 2 = 0 (4) x + 2y + 3 = 0 (5) 9x − 12y + 4 = 0 (6) 5x + 3y − 4 = 0 (7) 14x − 6y − 3 = 0 (8) 4x + 10y − 35 = 0 (9) 4x − 6y − 15 = 0 (10) 9x + 6y + 8 = 0 Q16. (1) 4x + 6y + 15 = 0 (2) 6x + 2y − 3 = 0 (3) x − 2y + 3 = 0 (4) 5x + 6y + 4 = 0 (5) 3x − y − 2 = 0 (6) 5x − 3y − 4 = 0 (7) 4x − 5y − 35 = 0 (8) 14x + 6y + 3 = 0 (9) x + 4y − 2 = 0 (10) 9x − 8y + 6 = 0 (6) 5x − 3y + 29 = 0 Q17. (1) 4x + 6y − 20 = 0 or 2x + 3y − 10 = 0 (2) 6x + 3y = 0 or 2x + y = 0 (7) 4x − 10y − 2 = 0 or 2x − 5y − 1 = 0 (3) x − 2y − 1 = 0 (8) 14x + 6y − 138 = 0 or 7x + 3y − 69 = 0 (4) 9x + 12y + 27 = 0 or 3x + 4y + 9 = 0 (9) x + 4y + 2 = 0 (5) 3x − y − 14 = 0 (10) 9x − 6y + 42 = 0 or 3x − 2y + 14 = 0 Q18. (1) 6x − 4y − 4 = 0 or 3x − 2y − 2 = 0 (6) 3x + 5y − 3 = 0 (2) 3x − 6y − 45 = 0 or x − 2y − 15 = 0 (7) 10x + 4y + 24 = 0 or 5x + 2y + 12 = 0 (3) 2x + y + 8 = 0 (8) 6x − 14y − 26 = 0 or 3x − 7y − 13 = 0 (4) 12x − 9y + 36 = 0 or 4x − 3y + 12 = 0 (9) 4x − y − 43 = 0 (5) x + 3y − 18 = 0 Q19. (1) 10 √ (2) 3 13 √ (3) 2 5 (4) 19.5 (10) 6x + 9y + 15 = 0 or 2x + 3y + 5 = 0 (5) √ √ (9) 2 17 √ (10) 3 29 √ (11) 3 17 √ (12) 12 401 10 √ 9 (6) 2 45 √ (7) 2 116 √ (8) 2 13 21 √ (13) 2 101 √ (14) 2 37 (15) √ 13 Chapter 5. Linear function 5.4 Vectors −4 4 2 (2) 4 3 6 1 (4) −3 Q20. (1) 2 6 −3 (6) 7 −5 −10 8 (8) −10 (3) (5) (7) (3) (1, 0) (5) (1, 3) (7) (−6, 2) 8 3 −4 (10) 8 (9) Q21. Find point B. (1) (−18, −1) (2) (3, −7) −5 Q22. (1) 4 −2 (2) −6 −8 Q23. (1) 11 5 (2) −7 (6) (−1, −9) −1 (3) −1 1 (4) −13 −33 (5) −2 −7 (6) −13 (4) (6, 10) −3 3 −1 (4) 1 (3) (9) (−5, 10) (8) (0, −1) (10) (15, 4) 1 −10 −12 −9 (5) (6) 13 5 15 (8) −20 2 2 −23 (10) −37 (7) (9) ~ v u+ Q24. (1) ~ v u− ~u ~u ~ v u− ~ v u+ ~v ~v ~ v u+ (7) (2) ~v ~v ~u ~ v u− ~ v u− ~u ~ v u+ ~v (8) ~ v u+ ~ v (3) u − ~ v u+ ~u ~v ~u ~ v u+ (4) ~ v u− ~u ~ v u− ~v (9) ~v ~ v u− ~u ~v (5) ~ v u+ ~ v u+ ~u ~ v u+ (10) ~u ~ v u− ~v (6) 22 ~ v u− Chapter 5. Linear function Q25. (1) 10 left, 4 up (6) 18 right, 11 down (2) 19 right, 18 up (7) 6 left, 6 down (3) 4 left, 4 up (8) 8 left, 7 up (4) 7 right, 22 down (9) 7 left, 9 up (5) 5 left, 6 up 6 Q26. (1) ± −8 −48 20 √ 6 √5 (4) ± 12 5 (3) ± 12 (2) ± 9 Q27. (1) 3 (3) 5 (4) −1 (2) 2 (2) Q29. (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 5.5 12 9 15 36 √ 8 √5 6 (4) ± ± −8 −4 5 0 3 6 e.g. , , −1 1 3 0 2 4 e.g. , , −3 −6 −9 0 1 2 e.g. , , −3 −1 1 0 1 2 e.g. , , 6 3 0 0 4 8 e.g. , , −9 −8 −7 0 2 4 e.g. , , 4 3 2 0 4 8 e.g. , , 8 11 14 0 3 6 e.g. , , 1 −4 −9 0 3 6 e.g. , , 3 10 17 0 5 10 e.g. , , −4 −6 −8 Q28. (1) ± (10) 1 right, 9 down ! √ 18 √ −4√ 13 5 (7) ± (5) ± √ 24 6 13 5 √ √ 2 √5 6 10 (8) ± (6) ± √ 2 10 −6 5 (3) ± √ −3√ 2 3 2 3√ (10) ± −3 3 (9) ± (5) 3 (6) − 10 3 ! √ 9√ 12 √ 9√13 2 √2 5 (7) ± (9) ± (5) ± 9 6 13 − √95 2 2 √ √ √ 3 √10 12√ 5 4 3 (6) ± (8) ± (10) ± −9 10 4 5 4 0 3 6 (11) e.g. , , 3 −1 −5 0 2 4 (12) e.g. , , 2 −3 −8 0 −2 −4 (13) e.g. , , −5 −6 −7 0 12 24 (14) e.g. , , 1 −6 −13 0 −1 −2 (15) e.g. , , −2 −5 −8 0 −3 −6 (16) e.g. , , −4 −9 −14 0 −10 −20 (17) e.g. , , 2 −2 −6 0 5 10 (18) e.g. , , 6 3 0 0 4 8 (19) e.g. , , −3 −4 −5 0 −6 −12 (20) e.g. , , −1 −10 −19 Simultaneous equations (5) x = − 23 , y = 2 (9) x = −1, y = 3 (2) x = 1, y = 2 (6) x = −6, y = 9 (10) x = −1, y = 3 12 (14) x = − 13 ,y = (3) x = 2, y = −3 (7) x = 3, y = 2 (11) x = 0, y = 2 (15) x = − 92 , y = 1 (4) x = −2, y = 1 (8) x = −3, y = 2 (12) x = −1, y = 0 (16) x = 8, y = −7 Q30. (1) x = 10 7 ,y = 12 7 Q31. (1) x = −1, y = 1 (2) x = −0.5, y = 1.5 (3) x = 2, y = 1 (5) x = − 11 5 ,y = (4) x = 1, y = 1 (6) x = −2, y = 4 23 (13) x = −4, y = −3 18 5 34 13 (7) no solutions (8) x = − 27 , y = − 43 Chapter 5. Linear function 5.6 Applications of linear equations and vectors Q32. (i) A(−4, −3), B(4, 1) √ (ii) 4 5 (iii) 30 Q33. (i) A(−4, 2), B(8, −2) √ (ii) 4 10 (iii) 24 Q34. (i) −6, 4.5 (ii) (3, 3) (iii) 15.75 Q35. √ (i) 12 5 (ii) 30 Q36. √ (i) 12 10 (ii) 60 Q37. 22.5 Q45. (1.59, −2.55) Q38. 19.5 Q46. (i) y = 2.8x + 8 Q39. 12 girls and 8 boys (ii) 41.60 pln Q40. 38 cars, 14 motorcycles (iii) 7.85 km Q41. 18 Q47. (i) 42.6 mln Q42. 34 (ii) 28.4 Q43. 6 buses, 24 cars (iii) 48.3 Q44. y = 0.358x − 1.59 (iv) 2203 Q48. (i) c - 7.21mph (ii) 12 miles East, 10 miles North of O, YES - at 2pm (iii) 15 miles East, 12 miles North of O, NO - c will arrive first Q49. (i) 11 km 200 m (ii) 17 minutes Q50. (i) 347 km (ii) 3h 48mins Q51. 20 5.7 Q52. (6, 5) and (−2, 9) (iii) 91.2 km h Q53. (2, 4) or (8, −8) Q54. (−3, 3) Chapter review non-calculator questions Q1. Q2. (i) (ii) (iii) (iv) (2.5, −4.5) (0, −12) 75 37.5 (i) (ii) (iii) (iv) (v) 2x + y + 3 = 0 (−2, 1) A : −12, B : 0.5 C : 4, D : −3.5 ABD; they have the same base (BD), but the heights:√AP >√CP (either AP =5 5> 3 5 = CP or ~ | = | 10 | > 10 e.g. |AP 5 6 |<9 3 so AP > 10 > 9 > CP ) and |P~S| = | (vi) (−8.5, 4) √ √ Q3. (i) 12 5 + 3 10 (ii) (10.5, −1) 5 (iii) ( 20 3 , −3) (iv) y = 2x − 15 √ √ (v) 8 5 + 2 10 √ Q4. (i) 3 13 (ii) (−5, 1) (iii) (−8, −3.5) and (−2, 5.5) 24 calculator questions Q5. 1.75 (ii) ± 8.77 0 (iii) 0 −4 (iv) −8 (i) A(−6, −2.5), B(4, 2.5) (ii) (1, 5) (iii) x − 2y + 9 = 0 or y = 12 x + 9 2 (iv) (−3.54, 2.73) (v) 25.9 (vi) 3.58 Q7. (vii) 29.1 6.84 Q6. (i) ± 13.7 (i) A(12.2, 0), B(0.935) (ii) (6.12, 4.68) (iii) 114 Chapter 6 Functions 6.1 Basic properties Q1. (1) yes Q2. (1) (2) (3) (2) yes (i) (ii) (iii) (iv) (v) (vi) (vii) −4 < x ≤ 4 −3 ≤ y ≤ 3 −2, 2.5 ] − 5, 1] [1, 4] — 0, 1.5 (i) (ii) (iii) (iv) (v) (vi) (vii) −5 ≤ x < 5 −3 ≤ y < 2 3 [−5, −1], [2, 5[ — [−1, 2] [−1, 2] −5 < x ≤ 5 1≤y<2 — — ] − 5, −3], ] − 3, −1], ] − 1, 1], ]1, 3], ]3, 5] (vi) — (vii) — (3) yes (6) (7) (i) (ii) (iii) (iv) (v) (8) (iii) (iv) (v) (vi) (vii) −4 [−5, −3] [−3, −1] x ≥ −1 −3.5 < x < −1 (i) (ii) (iii) (iv) (v) (vi) (vii) −4 < x ≤ 2 −3 < y ≤ 3 −1 −4 < x ≤ 2 — — −4 < x ≤ −2 (i) (ii) (iii) (iv) (v) (vi) (vii) −5 ≤ x ≤ 2 −2 ≤ y ≤ 3 −3.5, −1 [−5, −2[, [−2, 2] — — 1 (i) (ii) (iii) (iv) (v) (vi) (vii) x ≥ −5 y ≥ −1 −3, −1.5 [−2, −1], [4, +∞[ [−5, −2] [−1, 4] [−3, −1.5] −5 ≤ x < 5 {−2, −1, 0, 1, 2, } [−1, 1[ — — [−5, −3[, [−3, −1[, (9) (i) [−1, 1[, [1, 3[, [3, 5[ (ii) (vii) — (iii) (iv) (5) (i) x ≥ −5 (v) (ii) −2 ≤ y ≤ 2 (4) (i) (ii) (iii) (iv) (v) (vi) (4) no [−4, 5[ [−1, 2[ 1 − 10 3 , −2, 4 [−4, −2[, [−2, 1[ [3, 5[ 25 (5) no (6) yes (vi) [1, 3[ (vii) − 38 , 3 (10) (i) (ii) (iii) (iv) (v) (vi) (vii) x≤5 y≤2 −3.5, −1.5 x ≤ −3 [−2, −1[, [−1, 0] [−3, −2] ∪ [0, 5] x ≤ −4 (11) (i) (ii) (iii) (iv) (v) (vi) (vii) x ≥ −4 y≤4 3 [−2, −1] [−4, −2], [−1, +∞[ – −4, −1.5, 0 (12) (i) (ii) (iii) (iv) (v) (vi) (vii) −4 < x ≤ 5 −2 ≤ y < 3 −2.5, −1, 2 [−2, 1], [4, 5] ] − 4, −2], [1, 4] — −2, 3, 5 (13) (i) (ii) (iii) (iv) (v) (vi) (vii) x≤4 y≤3 −4, −2 ] − ∞, −3], [−2, 0], [3, 4] [−3, −2], [0, 3] — −3, −1, 1, 3.5 (14) (i) −4 ≤ x < 5 Chapter 6. Functions −2 < y ≤ 2 (vii) ] − 5, −3[∪] − 3, 0[∪]2, 3] (iv) [−4, −1], [0, 1[ −2, −1, 4 (v) ] − 1, 0], [1, 4] (20) (i) −5 ≤ x ≤ 3 [2, 3] (vi) — (ii) −2 ≤ y ≤ 2 [−4, −3[, [−3, −2], ] − (vii) [−4, 1[∪[1, 2] (iii) 2, between −4 and −3, 2, −1], ] − 1, 0[, [0, 2], between −2 and −1 (26) (i) −4 < x ≤ 3 [3, 5[ (iv) [−3, 0], [2, 3] (ii) −2 ≤ y ≤ 2 (vi) — (v) [−5, −3], [0, 2] (iii) −3.5, 2 (vii) −4, −3, 0, 3 (vi) — (iv) ] − 4, 1], ] − 1, 1] (15) (i) −5 < x < 3 (vii) ] − 5, −1[∪]1, 3[ (v) [1, 3] (ii) −2 ≤ y ≤ 2 (21) (i) −4 < x ≤ 3 (vi) — (iii) −4, −1, 2 (ii) 0 ≤ y ≤ 2 (vii) −4 < x ≤ 3 (iv) ] − 5, −3], [1, 3[ (iii) 3 (27) (i) −3 ≤ x < 2, (v) [−3.1] (iv) ] − 4, −3] 2<x≤3 (vi) — (v) [−3, −2], [1, 3] (ii) y = −1, 0 ≤ y ≤ 2 (vii) −3 (vi) [−2, 1[ (iii) −2 (16) (i) −4 < x < 4 (vii) [−2, 1[∪{2} (iv) [−2, −1] (ii) −3 < y ≤ 3 (v) [1, 2[ (22) (i) x ≤ 2 (iii) −3, 1 (vi) [−3, −2[, [−1, 1], (ii) y ≥ −1 (iv) ] − 4, −1], [2, 3] ]2, 3] (iii) −3, −1 (v) [−1, 2], [3, 4[ (vii) [−3, −2]∪]2, 3] (iv) [−2, 0] (vi) — (28) (i) −4 < x ≤ −1, (v) ] − ∞, −2] (vii) — 0<x≤2 (vi) [0, 2] (ii) −3 < y ≤ 2 (17) (i) −4 ≤ x ≤ 3 (vii) ] − 3, −1[ (iii) −2, 2 (ii) −2 ≤ y ≤ 3 (23) (i) −4 < x ≤ 4 (iv) ] − 4, −1], ]0, 1] (iii) −3.5, 1 (ii) −1 < y ≤ 1 (v) [1, 2] (iv) [−4, −2] (iii) −3, −1, 1, 3 (vi) — (v) [−2, 3] (iv) ] − 4, −2], ] − 2, 0], (vii) ] − 2, −1]∪]0, 2[ (vi) — ]0, 2], ]2, 4] (vii) [−4, 3[∪]0, 3] (29) (i) x > −4 (v) — (ii) (iii) (iv) (v) (18) (19) (i) (ii) (iii) (iv) (v) (vi) (vii) −4 < x ≤ 3 −2 ≤ y ≤ 2 −2, 0, 3 ] − 4, −1], [1, 3] [−1, 1] — ] − 4, −3[∪] − 0.5, 2[ (i) (ii) (iii) (iv) (v) (vi) −5 < x ≤ 3 1≤y≤3 — ] − 5, −3], [−1, 1] [−3, −1], [1, 3] — Q3. (1) domain: R, (vi) — (vii) {−2, 0, 2, 4} (24) (25) −3 ≤ x < 1 {−1, 0, 1, 2} [−1, 0[ — — [−3, −2[, [−2, −1[, [−1, 0[, [0, 1[ (vii) [−1, 1[ (i) (ii) (iii) (iv) (v) (vi) (30) (i) −4 ≤ x ≤ 4 (ii) −3 ≤ y ≤ 2 (iii) −1, 0, 3 (ii) (iii) (iv) (v) (vi) (vii) y ≥ −1 0 ] − 3, −1], [1, +∞[ ] − 4, −3], ]0, 1] — {−1}∪]0, +∞[ (i) (ii) (iii) (iv) (v) (vi) (vii) −2 < x ≤ 3 −2 ≤ y ≤ 1 2 [1, 3] ] − 2, −1] [−1, 0], ]0, 1] [−1, 0] range: [0, +∞[ (4) domain: [0, +∞[, range: [0, +∞[ (2) domain: R, range: R (5) domain: R, range: R (3) domain: R \ {0}, range: R \ {0} (6) domain: R, range: [0, +∞[ Q4. (1) − 25 (2) 3 (3) 1 3 (4) ±3 (5) 1 2 (6) −3, 1 (7) − 3π 2 (8) − 31 (9) −5.5 26 (10) ±2 √ (13) −2 3 (16) 1 (11) −3, 1 (14) 4.5 (17) (12) — (15) 2 (18) 9 1 7 2, 2 Chapter 6. Functions Q5. (1) domain: R, (9) domain: R, range: R range: [−9, +∞[ (2) domain: ] − ∞, 3], range: [0, +∞[ (10) domain: R, range: [3, +∞[ (3) domain: R \ {1}, range: R \ {3} (11) domain: R, range: R (4) domain: R, range: [−4, +∞[ (12) domain: [0, +∞[, range: [−3, +∞[ (5) domain: R, range: [−2, +∞[ (13) domain: R, range: [0, +∞[ (6) domain: R, range: R (14) domain: R, (7) domain: [− 13 , +∞[, range: [0, +∞[ (15) domain: [0, range: ] − ∞, 4[∪[7, +∞[ (8) domain: R \ {−4}, range: R \ {−2} Q6. (1) 1 (4) −40 (10) − 11 9 (7) 5π 13 9 (2) 3 (5) 16 (8) 5 (11) (3) 3.5 (6) 0 (9) −3 (12) 4.2 (7) f (−x) = − 32 x + π √ (8) f (−x) = 1 − 3x Q7. (1) f (−x) = −2x + 5 √ (2) f (−x) = 3 + x (3) f (−x) = 3 − 2 x+1 range: ] − ∞, 3] 1 1 4 [∪] 4 , +∞[, (9) f (−x) = 3 x−4 2 −2 (13) 18 √ (14) 2 6 − 3 (16) −27 (15) −16 (18) − 13 (17) 2 3 √ (13) f (−x) = − 3x + 6 √ (14) f (−x) = −2x − 3 (15) f (−x) = −x3 − 8 (4) f (−x) = 9 − x2 (10) f (−x) = x − 4 (16) f (−x) = −(x + 1)3 (5) f (−x) = (2x + 1)2 (11) f (−x) = (1 − x)2 − 4 (17) f (−x) = 3 − |2x + 4| (6) f (−x) = |1 − x| − 2 (12) f (−x) = 3 + |4 + 2x| (18) f (−x) = √ √−x−3 2 −x−1 Q8. (1) O (4) E (7) O (10) E (13) E (16) N (2) N (5) E (8) O (11) N (14) O (17) E (3) O (6) N (9) N (12) E (15) E (18) N 6.2 Transformations of graphs of functions Q9. Graphs of y = f (x) (black, dashed) and y = −f (x) (red, solid) y y x x (1) (4) y y x x (2) (5) y y x x (3) (6) 27 Chapter 6. Functions Q10. Graphs of y = f (x) (black, dashed) and y = f (−x) (red, solid) y y x x (4) (1) y y x x (2) (5) y y x x (3) (6) Q11. Graphs of y = f (x) (black, dashed), y = 2f (x) (red, solid) and y = 21 f (x) (blue, solid) y y x x (4) (1) y y x x (2) y (5) y x x (3) (6) 28 Chapter 6. Functions Q12. Graphs of y = f (x) (black, dashed), y = f (2x) (red, solid) and y = f ( 12 x) (blue, solid) y y x x (1) (4) y y x x (2) (5) y y x x (3) (6) Q13. Graphs of y = f (x) (black, dashed) and y = g(x) (red, solid). y y x x (4) (1) g(x) = (x − 3)2 − 1 x ∈ R, y ≥ −1 √ g(x) = x + 1 + 2 x ≥ −1, y ≥ 2 y y x x (2) (5) g(x) = (x + 2)3 − 3 x, y ∈ R g(x) = − 32 x − 3 x, y ∈ R y y x x (6) (3) 1 g(x) = x−4 +1 x ∈ R \ {4}, y ∈ R \ {1} g(x) = |x + 5| + 1 x ∈ R, y ≥ 1 29 Chapter 6. Functions y y x x (7) g(x) = (x + 4)2 + 2 x ∈ R, y ≥ 2 (10) y √ g(x) = x + 4 − 2 x ≥ −4, y ≥ −2 y x x (8) (11) g(x) = 21 x + 3 x, y ∈ R g(x) = (x + 2)3 + 1 x, y ∈ R y y x x (9) (12) 1 g(x) = x+1 −2 x ∈ R \ {−1}, x ∈ R \ {−2} g(x) = |x + 3| − 4 x ∈ R, y ≥ −4 Q14. y = f (x) (black, dashed), y = |f (x)| (red, solid) y y x x (1) (4) y y x x (5) (2) y y x x (6) (3) 30 Chapter 6. Functions Q15. graph of y = f (x) (dashed, black) and of y = f (|x|) (solid, red) y y x x (4) (1) y y x x (5) (2) y y x x (3) Q16. (1) (6) (i) y = x2 (8) (2) (ii) translation by 2 −4 (iii) y = (x − 2)2 − 4 (3) (i) y = x2 (11) (i) y = x3 (ii) translation by (7) (i) y = x3 (ii) reflection in x-axis or in y-axis −5 followed by translation by 1 3 (iii) y = −(x + 5) + 1 2 −3 (iii) y = |x − 2| − 3 (12) −5 (ii) translation by 1 3 (iii) y = (x + 5) + 1 (i) y = x3 (ii) reflection in x-axis or in y-axis (iii) y = −x3 0 −3 (i) y = |X| (i) y = x3 (6) −5 −2 followed by translation by √ (iii) y = −x − 3 4 (ii) translation by 1 3 (iii) y = (x − 4) + 1 (5) x −1 (ii) translation by −4 2 (iii) y = (x + 1) − 4 (4) √ (ii) translation by √ (iii) y = x + 5 − 2 √ (9) (i) y = x (ii) reflection in y-axis √ (iii) y = −x √ (10) (i) y = x (ii) reflection in y-axis (i) y = x2 (i) y = 3 (ii) translation by 1 2 (iii) y = (x − 3) + 1 (i) y = |X| (ii) reflection in x axis followed by translation by 2 1 (iii) y = −|x − 2| + 1 √ (13) (i) y = x −2 (ii) translation by −2 √ (iii) y = x + 2 − 2 √ (14) (i) y = x (ii) reflection in y-axis followed by translation by 31 2 −2 Chapter 6. Functions −2 −2 followed by reflection in y-axis √ (iii) y = −x + 2 − 2 √ (15) (i) y = x (ii) reflection in x-axis −4 followed by translation by 1 √ (iii) y = − x + 4 + 1 or translation by (16) (17) (i) y = (iii) y = (i) y = (iii) y = 1 x−2 1 x (20) (21) (22) 1 x+2 1 x −2 −1 −1 (i) y = (ii) reflection in x-axis or in y-axis −2 followed by translation by −1 1 (iii) y = − x+2 − 1 (28) 1 x (i) y = (ii) reflection in x-axis or in y-axis 1 followed by translation by 2 1 (iii) y = − x−1 +2 (29) (i) y = x2 (ii) vertical stretch by −2 3 (iii) translation by 3 (30) (i) y = x2 (ii) vertical stretch by (i) y = |x| (ii) vertical stretch by − 23 3 (iii) translation by 2 (i) y = x3 (ii) vertical stretch by − 14 −3 (iii) translation by 2 √ (25) (i) y = x (ii) vertical stretch by −2 0 (iii) translation by −2 √ (26) (i) y = x (ii) vertical stretch by 2 −1 (iii) translation by −3 √ (27) (i) y = x (ii) reflection in x-axis (iii) horizontal stretch by 2 0 (iv) translation by 3 2 0 −1 −2 (24) 1 x (ii) translation by (19) (23) (i) y = x1 (ii) reflection in x-axis or in y-axis (iii) y = − x1 (ii) translation by (18) (iii) translation by (i) y = x1 (ii) vertical / horizontal stretch by 0 (iii) translation by −1 1 2 (i) y = x1 (ii) vertical / horizontal stretch by −2 2 (iii) translation by 1 (i) y = x2 3 −4 (iii) reflection of the part below x-axis in the axis (ii) translation by 1 2 Q17. Graphs of y = f (x) (black, dashed) and y = g(x) (red, dotted). (1) vertical stretch by 2, translation 3 right y (3) reflection in y-axis, translation 2 left y x x (2) vertical stretch by 3, translation 1 left y (4) translation 2 right, 2 down y x x 32 Chapter 6. Functions (5) reflection in x axis of the part for x > 0 y (12) vertical stretch by 2 followed by translation 1 left, 3 down y x x (6) vertical stretch by −2, translation 3 right y (13) vertical stretch by −2 followed by translation 3 left, 2 up y x x (7) horizontal dilation by y 1 2, translation 1 up (14) vertical dilation by −2 followed by translation 1 left, 1 up y x x (8) horizontal dilation by 13 , translation 2 up y (15) vertical dilation by −2 followed by translation 3 right 1 up y x x (9) reflection in y-axis, translation 1 down y (16) reflection in x-axis followed by translation 2 right 2 down y x (10) reflection in x/y-axis followed by translation 3 down y x x (17) reflection in x-axis of the part y < 0 followed by vertical stretch by 2 y (11) reflection in y-axis of the part x > 0 followed by reflection in x-axis of the part y < 0 y x x (18) horizontal dilation by 12 , translation 1 down y x 33 Chapter 6. Functions (26) vertical dilation by − 12 followed by translation 3 left, 2 up y (19) reflection in x-axis followed by translation 3 right, 3 up y x x (20) vertical stretch by 2 followed by translation 1 right, 2 up y (27) vertical dilation by 3 followed by translation 1 left, 3 down y x x (28) vertical dilation by −2 followed by translation 2 left, 4 up y (21) reflection in x-axis followed by translation 2 right 2 up y x x (22) vertical dilation by 21 followed by translation 1 left 2 down y (29) reflection of the part left of y-axis in the axis y x x (30) reflection of the part below x-axis in the axis y (23) reflection in x-axis of the part y < 0 followed by reflection in x-axis y x x 2 (31) shift by followed by reflection of the part (24) reflection in x-axis and horizontal dilation by 2 −1 followed by translation 3 up right of y-axis in the axis y y x x (25) vertical dilation by 21 followed by translation 3 right, 1 down y −2 followed by reflection of the part −4 below x-axis in the axis y (32) shift by x x 34 Chapter 6. Functions Q18. (1) A0 = (4, 4), (2) A0 = (−3, 2), Q19. (3) A0 = (−1.5, 3), (5) A0 = (2, 7), (4) A0 = (−3, −4), (6) A0 = (−8, −5). (3) y = f ( x2 ) (i) (1) y = f (−x) − 2 y y x x (4) y = 12 f (x − 1) + 2 y (2) y = −f (x + 1) − 1 y x x (ii) (1) y = −f (x) − 1 (2) y = f (2x) − 1 (3) y = 21 f (−2x) 6.3 Equations and inequalities Q20. (1) −1, 31 (3) − 74 , 34 (2) −1, 2 − 83 , 43 Q21. (i) −2, 2 (4) Q22. (ii) 0, 4 (5) 2 (7) 11 (6) −1 (i) −3 (8) Q23. (ii) −5 Q25. (1) 0: — (ii) (9) −1 (11) 3 (10) 1 1 2 7 2 (5) 3: −0.0644, 3.17, 4.89 Q24. (12) (i) 9 (ii) 4.5 (9) 2: −1.15, 1.15 (2) 1: −1.31 (6) 1: 2.21 (10) 2: −1.22, 0.549 (3) 2: −1, 1.54 (7) 1: −1.52 (11) 2: 0.780, 5.55 (4) 1: 0.0605 (8) 3: −0.481, 1.31, 3.17 (12) 2: −5.24, −0.764 Q26. (1) x ≤ −0.861 or 0.746 ≤ x ≤ 3.11 (8) −2 ≤ x ≤ −1.41 or −1 < x ≤ 1.41 (2) −4.59 < x < −0.887 or x > 1.47 (9) −3 < x ≤ −2 or −1.41 ≤ x < −1 or 1.41 ≤ x < 3 (3) −0.535 ≤ x ≤ 0.444 or x ≥ 3.69 6.4 (i) 4 3 (4) −1.65 < x < 1.27 or 2 < x < 2.38 (10) −0.562 < x < 1 or 3.56 < x ≤ 4 (5) −0.618 < x < 0 or 1.62 < x ≤ 2 (11) 1 ≤ x ≤ 3.56 (6) 0 ≤ x ≤ 1 (12) −2.41 < x < −0.305 (7) −1.88 ≤ x < −1 or 0.347 ≤ x ≤ 1.53 (13) 0.918 ≤ x ≤ 2.66 chapter review non-calculator questions 35 1 2 Chapter 6. Functions y vertical dilation by 13 followed by shift 3 left and 1 down Q1. (1) x y horizontal dilation by −2 followed by shift 1 up (2) x y (3) vertical dilation by − 12 followed by shift 3 right and 1 down x y vertical dilation by −3 followed by shift 1 left and 2 up x (4) y vertical (or horizontal) dilation by −3 followed by shift 2 left and 1 down x (5) y vertical (or horizontal) dilation by − 12 followed by shift 2 up (6) x 36 Chapter 6. Functions y reflection of the part right of y-axis in the axis x (7) y shift 3 left and 3 down followed by reflection of the part below the x-axis in th axis (8) x −1 (4) y = − 32 |x + 3| + 2 √ (5) y = −2x − 1 − 2)3 + 1 (6) y = ||x + 3| − 2| Q2. (1) y = −2(x + 3)2 + 3 (2) y = (3) y = −2 x−1 1 2 (x Q3. (1) even (2) odd (3) neither y y x x (5) y Q4. (i) (1) y x (6) y x (2) y (7) (ii) (1) (2) (3) (4) (5) (6) (7) x (3) y y y y y y y y = f (x − 2) + 1 = −f (x + 1) + 1 = −2f (x − 1) = 21 f (x) − 1 = |f (x) + 1| = f (2x) + 1 = f (|x|) x (4) f4 : x ∈ R f8 : x ≤ 3, x 6= −3 f3 : y ≥ −1 f1 : x ≤ − 23 f5 : x ∈ R, x 6= −1 RANGE: f4 : y ≥ −5 f2 : x ∈ R f6 : x ∈ R f1 : y ≤ 0 f5 : y ∈ R, y 6= 3 f3 : x ∈ R f7 : x > −3 f2 : y ≤ 4 f6 : y ≤ 2 Q5. DOMAIN: 37 x function domain range zeroes decreasing increasing constant even odd one-to-one Q6. (1) [−5, −1[∪]1, 5] [0, 2] −4, 4 [−5, −4], [2, 4] [−4, −2], [4, 5] [−2, −1[, ]1, 2] yes no no (2) ] − 5, 4[ ] − 4, 2] −3, 0, 3 [−1, 1] ] − 5, −1], [1, 5[ ∅ no no no (3) [−5, 5] [−2, 2] −4, 0, 4 [−5, −4], [−2, 2], [4, 5] [−4, −2], [2, 4] ∅ no yes no calculator questions Q7. (1) (−3.59, −0.279), (−0.549, −1.82), (10.1, 0.0986) (2) (4.24, 9.48), (8.83, 18.7) (3) (−13.4, −0.590), (0.561, 20.1), (15.3, −0.416) (4) (−16.4, −6.82), (0.382, 0.159), (16.0, 6.66) Q8. (1) x ∈ [−20, −3.59[∪] − 0.549, 0[∪]10.1, 20] / −20 ≤ x < −3.59 or −0.549 < x < 0 or 10.1 < x ≤ 20 (2) x ∈ [−20, 4.24[∪]8.83, 20] / −20 ≤ x < 4.24 or 8.83 < x ≤ 20 (3) x ∈ [−20, −13.4]∪]0, 0.561] ∪ [15.3, 20] / −20 ≤ x ≤ −13.4 or 0 < x ≤ 0.561 or 15.3 ≤ x ≤ 20 (4) x ∈ [−20, −16.4] ∪ [0.382, 16.0] / −20 ≤ x ≤ −16.4 or 0.382 ≤ x ≤ 20 (answer can be given in any of the two forms shown above) Chapter 7 Quadratic function 7.1 Solving quadratic equations 7.1.1 Factorisation Q1. (1) x2 + 3x + 2 (5) x2 − 6x + 8 (9) x2 + 2x − 8 (2) x2 + 4x + 3 (6) x2 − 13x + 12 (10) x2 − 9 (3) x2 + 7x + 10 (7) x2 + x − 6 (11) x2 − x − 12 (4) x2 − 4x + 3 (8) x2 − x − 6 (12) x2 + 4x − 12 Q2. (1) 2x2 + 3x + 1 (5) 2x2 − x − 1 (9) 6x2 + 13x − 5 (2) 2x2 + 9x + 10 (6) 3x2 + x − 2 (10) 6x2 − 13x + 5 (3) 2x2 − 7x + 3 (7) 3x2 − 5x − 2 (11) 6x2 + 7x − 5 (4) 2x2 − 5x + 3 (8) 3x2 − x − 2 (12) 15x2 − 16x + 4 Q3. (1) (2) (3) (4) (5) (6) (x)(x − 2) (x + 2)(x + 1) (x + 3)(x + 2) (x + 3)(x + 1) (x + 4)(x) (x + 4)(x + 1) (7) (8) (9) (10) (11) (12) (x + 4)(x + 2) (x + 4)(x + 3) (x + 5)(x + 1) (x + 5)(x + 2) (x + 6)(x + 2) (x + 1)(x + 12) (13) (14) (15) (16) (17) (18) (x − 1)(x − 3) (x − 1)(x − 2) (x − 2)(x − 3) (x − 1)(x − 6) (x − 2)(x − 4) (x − 1)(x − 8) Q4. (1) (x + 3)(x − 2) (5) (x + 1)(x − 8) (9) (x + 2)(x − 6) (2) (x + 2)(x − 3) (6) (x + 3)(x − 3) (10) (x + 6)(x − 2) (3) (x + 4)(x − 2) (7) (x + 6)(x − 1) (11) (x + 4)(x − 3) (4) (x + 2)(x − 4) (8) (x + 3)(x − 4) (12) (x + 4)(x − 6) 38 (13) x2 − 2x − 24 (14) x2 + 5x − 24 (15) x2 + 4x − 21 (13) 15x2 − 17x − 4 (14) 15x2 + 4x − 4 (15) 12x2 − 25x + 12 (19) (x − 3)(x − 4) (20) (x − 2)(x − 6) (21) (x − 1)(x − 12) (13) (x + 2)(x − 12) (14) (x + 8)(x − 3) (15) (x + 24)(x − 1) Chapter 7. Quadratic function Q5. (1) (x + 1)(x + 2) (8) (x + 3)(x + 4) (15) (x − 2)(x − 2) (22) (x + 3)(x − 4) (2) (x + 2)(x + 3) (9) (x + 2)(x + 6) (16) (x − 3)(x − 5) (23) (x − 3)(x + 5) (3) (x + 1)(x + 3) (10) (x − 1)(x − 2) (17) (x − 3)(x − 4) (4) (x + 2)(x + 4) (11) (x − 2)(x − 3) (18) (x − 2)(x − 6) (5) (x + 1)(x + 4) (12) (x − 1)(x − 8) (19) (x + 2)(x − 4) (6) (x + 2)(x + 3) (13) (x − 2)(x − 4) (20) (x + 1)(x − 8) (26) (x + 4)(x − 6) (7) (x + 3)(x + 5) (14) (x − 1)(x − 4) (21) (x + 6)(x − 2) (27) (x − 1)(x + 24) (24) (x + 2)(x − 12) (25) (x − 3)(x + 8) Q6. (1) (2) (3) (4) (5) (6) (x + 1)(2x + 1) (2x + 1)(x + 2) (2x + 3)(x + 1) (2x + 3)(x + 2) (x + 3)(2x + 1) (2x + 5)(x + 2) (7) (8) (9) (10) (11) (12) (2x − 1)(x − 1) (2x − 1)(x − 2) (2x − 1)(x − 3) (2x − 3)(x − 1) (x + 1)(2x − 1) (2x + 1)(x − 1) (13) (14) (15) (16) (17) (18) (x + 2)(3x − 1) (x + 1)(3x − 2) (3x + 1)(x − 2) (3x + 2)(x − 1) (3x − 4)(x − 2) (3x − 2)(x − 4) (19) (3x − 1)(x − 8) Q7. (1) (2) (3) (4) (5) (6) (3x − 1)(2x − 1) (2x − 1)(3x − 2) (3x + 2)(2x − 1) (3x + 1)(2x − 3) (3x + 2)(2x − 3) (3x + 2)(3x − 1) (7) (8) (9) (10) (11) (12) (2x + 5)(3x − 1) (3x − 5)(2x − 1) (3x + 5)(2x − 1) (5x − 1)(3x − 4) (5x − 2)(3x − 2) (5x + 1)(3x − 4) (13) (14) (15) (16) (17) (18) (3x + 2)(5x − 2) (3x + 5)(2x − 1) (2x + 5)(3x − 1) (3x + 1)(2x − 5) (2x + 1)(3x − 5) (2x + 3)(5x − 3) (19) (5x + 9)(2x − 1) 7.1.2 Completing the square Q8. (1) x2 − 2x + 3 (2) x2 − 4x + 0 (3) 2x2 + 4x − 2 Q9. (1) (2) (3) (4) (5) (6) Q10. (1) (2) (3) (x + 1)2 + 1 (x + 1)2 − 1 (x − 2)2 − 3 (x + 2)2 + 1 (x − 3)2 + 1 (x + 3)2 − 2 (i) (x + 1)2 + 2 = 0 (ii) no solutions (i) (x + 2) − 5 = 0 √ (ii) −2 ± 5 (6) (i) 2(x + 2)2 − 5 = 0 (7) 7.1.3 (13) (14) (15) (16) (17) (18) √ 10 2 2 (8) (i) 3(x + 1) − 3 = 0 (ii) −2, 0 (i) −5(x + 1)2 + 9 = 0 √ 3 5 5 2 (20) (5x + 1)(2x − 9) (21) (5x + 2)(3x − 1) − 23 (x (ii) −3 ± (10) (19) 2(x + 1)2 + 4 (20) −2(x + 12 )2 + (21) − 13 (x − 1 2 3 2 5 ) + 2 4 (i) − 34 (x − 23 )2 − (ii) no solutions (i) 4 3 (x 2 3 + 6)2 − 10 = 0 √ 30 2 − 53 (x − 65 )2 + 1 = √ 15 6 ± 5 5 2 2 5 (x + 2) − 2 = 0 2 + 3) + 5 = 0 √ 30 2 (11) (i) (ii) (12) (i) (ii) −2 ± √ 5 Quadratic formula Q11. (1) −2.62, −0.382 (5) −3.41, −0.586 (9) −5.16, 1.16 (2) no solution (6) −3.62, −1.38 (10) −6.61, 0.606 (14) 0.614, 4.89 (3) −7.16, −0.838 (7) −1.24, 3.24 (11) −1.47, 7.47 (15) −3, 0.667 (4) 0.764, 5.24 (8) −5.19, 0.193 (12) −5.46, 1.46 (16) no solution 39 =0 (ii) −6 ± (i) 13 (x + 3) + 21 = 0 (ii) no solutions (i) (9) 3 2 (ii) −1 ± √ 2(x − 2)2 + 4 2(x − 1.5)2 − 3.5 3 1 2 2 (x − 1) + 2 −2(x + 25 )2 + 29 2 −(x + 2)2 + 6 − 21 (x − 2)2 + 1 (i) −4(x − 1)2 + 3 = 0 (ii) 1 ± 2 (ii) −2 ± (4) (x + 4)2 − 8 (x − 1.5)2 − 5.25 (x + 2.5)2 − 0.25 2(x − 1)2 2(x + 1)2 − 2 2(x + 2)2 − 6 (5) (21) (4x − 3)(3x − 4) (7) − 12 x2 + 2x − 27 (8) 23 x2 − 38 x + 76 (9) 14 x2 + 1x + 3 (4) 3x2 + 24x + 28 (5) −4x2 − 4x + 3 (6) 5x2 − 10x − 5 (7) (8) (9) (10) (11) (12) (20) (3x + 2)(x − 4) (13) −0.851, 2.35 0 Chapter 7. Quadratic function (17) −5.26, 0.76 (19) 2.2 (21) −2.77, 1.44 (23) −2 (18) −2.82, 1.07 (20) 1.16, 4.49 (22) −2.26, 0.591 (24) no solution √ √ −3− 5 −3+ 5 , 2 2 Q12. (1) (2) (3) (4) (5) (8) −2, 3 2 √ (14) √ no solution (9) −3−2 23 , −3+2 23 √ √ √ √ −4 − 10, −4 + 10 √ √ (10) 3−2 31 , 3+2 31 3 − 5, 3 + 5 √ √ √ √ −2−2 7 −2+2 7 , −2 − 2, −2 + 2 (11) 3 3 √ √ (12) no solution (6) −5−2 5 , −5+2 5 −1 (7) 2 , 4 (13) no solution 7.2 (15) 1 2, 2 3, −6 (20) −3 (21) (16) no solution (17) (18) (19) 1 2, (22) −5 √ √ −7− 65 −7+ 65 , 8 8 √ √ −1− 6 −1+ 6 , 5 5 (23) (24) √ √ 2− 7 2+ 7 3 , 3 √ √ −9− 89 −9+ 89 , 4 4 √ √ −5− 37 −5+ 37 , 6 6 √ √ −5− 13 −5+ 13 , 4 4 √ √ 2− 7 2+ 7 , 2 2 Parabola Q13. (1) x-int.: (−2, 0), (−1, 0), vertex: (−1.5, −0.25), y-intercept: (0, 2) (5) x-int.: (−3.41, 0), (−0.586, 0), vertex: (−2, −2), y-intercept: (0, 2) (9) x-int.: (−0.225, 0), (2.22, 0), vertex: (1, 3), y-intercept: (0, 1) (2) x-int.: (−1, 0), (3, 0), vertex: (1, −4), y-intercept: (0, −3) (6) x-int.: (−8.87, 0), (−1.13, 0), (10) x-int.: (−1, 0), (4, 0), vertex: (−5, −7.5), vertex: (1.5, 6.25), y-intercept: (0, 5) y-intercept: (0, 4) (3) x-int.: (−7.16, 0), (−0.838, 0), vertex: (−4, −10), y-intercept: (0, 6) (7) x-int.: (−1, 0), (2, 0), vertex: (0.5, −4.5), y-intercept: (0, −4) (11) x-int.: (−0.333, 0), (1, 0), vertex: (0.333, 1.333), y-intercept: (0, 1) (4) x-int.: none, vertex: (1.5, 3.75), y-intercept: (0, 6) (8) x-int.: (0.209, 0), (4.79, 0), vertex: (2.5, 5.25), y-intercept: (0, −1) (12) x-int.: (−0.667, 0), (0.5, 0), vertex: (−0.083, 2.042), y-intercept: (0, 2) Q14. y = −x2 − 2x + 8 Q22. y = − 32 x2 + 9x − Q15. y = −2x2 + 12x − 10 Q23. y = −2x2 − 4x + 6 Q16. y = 21 x2 − 12 x − 3 Q24. y = x2 − 2x − 1 Q17. y = −2x2 + 8x − Q18. y = − 32 x2 + 21 2 x 7 2 − 15 2 Q19. y = x + 10x + 24 Q20. y = − 32 x2 + 6x − 1 2 Q21. y = −1x + 8x − 18 Q33. (1) (2) (3) (4) (5) (6) (7) (8) (9) 7.3 7.3.1 25 2 Q29. y = −3x2 − 6x − 49 , y = −3(x + 21 )(x + 32 ) Q30. y = 12 x2 − 2x, y = 21 (x)(x − 4) 2 Q25. y = 2x + 12x + 17 Q26. y = − 21 x2 − 2x + 3 Q31. y = − 21 x2 − 3x − 4, y = − 21 (x + 3)2 + 21 Q27. y = (x + 1)2 − 4, y = (x + 3)(x − 1) Q28. y = 2(x − 34 )2 − 27 8 , y = 2(x + 12 )(x − 2) y= x2 − 2x − 15 2x2 − 12x + 10 2x2 + 5x − 3 x2 + 4x + 1 −2x2 − 18x − 28 −4x2 + 28x − 49 − 12 x2 − 2x − 3 y= (x − 1)2 − 16 2(x − 3)2 − 8 2(x + 54 )2 − 49 8 (x + 2)2 − 3 −2(x + 92 )2 + 25 2 −4(x − 72 )2 − 12 (x + 2)2 − 1 −4x2 + 8x − 2 √ −2x2 + 2x 2 + 7 −4(x − 1)2 + 2 √ −2(x − 2 2 ) 2 +8 Q32. y = −2x2 − x + 3, y = −2(x + 41 )2 + 3 18 y= (x − 5)(x + 3) 2(x − 1)(x − 5) 2(x − 12 )(x + 3) √ √ (x + 2 − 3)(x + 2 + 3) −2(x + 2)(x + 7) −4(x − 27 )2 — −4(x − 1 + √ −2(x − 2 2 Applications of quadratics Quadratic inequalities Q34. 40 √ 2 )(x 2 √ −1− + 2)(x − √ 2 2 2 ) 2 − 2) −3, 5 1, 5 −3, 12 √ −2 ± 3 −2, −7 3.5 none √ 1± √ 2 2 (1, −16) (3, −8) (− 54 , − 49 ) 8 (−2, −3) (− 92 , 25 ) 2 ( 72 , 0) (−2, −1) 64 64 49 12 100 0 −2 (1, 2) 32 2 2 ±2 ( √ 2 , 8) 2 64 Chapter 7. Quadratic function (1) ] − ∞, −2] ∪ [−1, +∞[ (5) ] − ∞, −1] ∪ [− 13 , +∞[ (2) [−3, − 13 ] (6) ] − ∞, − 37 ] ∪ [1, +∞[ (3) ] 21 , 2[ (4) ] − (7) ] − ∞, −2[∪] 12 , +∞[ (8) ] − (10) no solutions 3, − 13 [ 1 3 2, 2[ Q35. (1) ] − ∞, −3.41[∪] − 0.586, +∞[ (9) [− 12 , 1] (11) R (12) ] − ∞, − 12 [∪] − 13 , +∞[ (10) ] − 2.57, 1.07[ (2) ] − ∞, −3.28[∪]0.61, +∞[ (11) [−2.23, 0.897] (3) ] − ∞, 0.634] ∪ [2.37, +∞[ (12) ] − ∞, −0.693] ∪ [1.44, +∞[ (4) no solutions (13) ] − 12, −2.87[ (5) R (14) ] − ∞, −1.43[∪]0.904, +∞[ (6) R (15) [−0.48, 0.956] (7) [0.219, 2.28] (16) ] − ∞, −2.26] ∪ [0.591, +∞[ (8) ] − ∞, −0.897] ∪ [2.23, +∞[ (17) R (9) ] − ∞, 0.719[∪]2.78, +∞[ (18) no solutions 7.3.2 Problems involving quadratics Q36. (i) 12 hours (ii) 6 hours (iii) 72 km Q37. (i) 27 km (ii) 9 hours (iii) 4 hours (iv) 75 km Q38. (i) 12 m (ii) 2.58 s (iii) 0.816 s (iv) 15.3 m Q39. 50m × 100m Q44. Q40. both 11; 121 Q41. 11 and 5.5; 60.5 √ (i) y = 6; 2 10 √ (ii) y = 8; 2 11 √ (iii) p = 2; 2 5 Q42. 4 and 6; 24 √ Q45. Q43. 0.5 Q46. (i) no 2 2 (ii) 3m4cm (iii) 2m26cm Q47. 3.01m Q49. 6.5m × 13m Q48. Q50. 0.75m2 = 7500cm2 (i) 2400m (ii) 5100m Q51. 9mm (iii) 5420m (iv) 14 hrs 20 mins Q52. 20.7cm or 54.3cm (v) 23 hrs 20 mins Q53. 85cm Q54. yes: edge 1m long veritcally, edge 85cm long across the ditch, edge 2m long along the ditch 7.3.3 Investigating graphs of rational functions Q55. (1) 1. 2. 3. 4. 5. 6. — (1, 0) (0, 12 ) x=2 y=1 — (2) 1. — 2. (−2, 0) 3. (0, −4) 4. x = 1 5. y = 2 6. — (3) 1. 2. 3. 4. 5. 6. (4) 1. 2. 3. 4. 5. 6. — (3, 0) (0, −3) x = −2 y=2 — — (2, 0) (0, − 12 ) x = −2 y = 21 — (5) 1. — 2. (−1, 0) 3. (0, − 31 ) 41 4. x = 1 5. y = 13 6. — (6) 1. 2. 3. 4. 5. 6. y=2 none (0, 2) none none — (7) 1. 2. 3. 4. 5. 6. 1 y = x+3 none (0, 13 ) x = −3 y=0 — (8) 1. 2. 3. 4. 5. 6. 1 y = x+3 none (0, 13 ) x = −3 y=0 — (9) 1. 2. 3. 4. 5. 6. 1 y = x−2 none (0, − 12 ) x=2 y=0 — (10) 1. y = 2. 3. 4. 5. 6. (11) 1. 2. 3. 4. 5. 6. (−2, 0) (0, −1) x=2 y=1 — y = x+3 x+2 (−3, 0) (0, 1.5) x = −2 y=1 — (12) y = 1. 2. 3. 4. 5. 6. x+2 x−2 2. 3. 4. 5. 6. (14) 1. y = 2x+1 x−1 — none (0, −1) x=1 y=2 — (13) 1. y = (−3, 0), (2, 0) (0, 1) x = −2, x = 3 y=1 — 3. (0, 23 ) 4. x = −3, x = 2 5. y = 2 6. — (x−3)(x−2) (x+3)(x+2) (17) 1. y = 2. 3. 4. 5. 6. (2, 0), (3, 0) (0, 1) x = −3, x = −2 y=1 — (15) 1. y = (x+3)(2x−1) (x−3)(x+1) (−3, 0), ( 12 , 0) 2. 3. 4. 5. 6. (x+3)(x−2) (x−3)(x+2) 2. (−2, 0), (1, 0) 2. (−3, 0), (2.5, 0) 3. (0, 1) 4. x = −1.5, x = 5 5. y = 1 6. — (18) 1. y = x2 −4 x+1 2. (±2, 0) (0, 1) x = −1, x = 3 y=2 — (16) 1. y = (x+3)(2x−5) (x−5)(2x+3) 3. (0, −4) 4. x = −1 5. none 2(x−1)(x+2) (x−2)(x+3) 6. — Chapter 8 Trigonometry 8.1 Degrees and radians Q1. (1) (2) (3) π 2 π 4 π 3 (4) (5) (6) Q2. (1) 3.14 π 6 π 12 3π 4 (7) (8) (9) 2π 3 3π 2 π 9 (10) (11) (12) 5π 18 5π 12 11π 6 (13) (14) (15) 7π 12 7π 6 5π 6 (3) 1.40 (5) 1.75 (7) 1.36 (9) 3.49 (11) 1.26 (2) 1.57 (4) 0.209 (6) 0.995 (8) 1.89 (10) 0.314 (12) 5.10 Q3. (1) 30◦ (2) 120◦ (3) 225◦ (4) 22.5◦ (5) 75◦ (6) 105◦ (7) 300◦ (8) 40◦ (9) 100◦ (10) 150◦ (11) 172◦ (12) 90.0◦ (13) 57.3◦ (14) 50.0◦ (15) 69.9◦ 8.2 Trigonometric ratios θ Q4. sin θ cos θ tan θ π 6 π 4 π 3 30◦ 45◦ 60◦ √ √ 1 2 √ 3 2 √1 3 2 2 √ 2 2 1 3 2 1 2 √ 3 42 Chapter 8. Trigonometry √ sin θ cos θ tan θ (6) sin α = 40◦ 0.643 0.766 0.839 (7) sin α = 60◦ 0.866 0.5 1.73 (8) sin α = 1◦ 0.0175 1 0.0175 (9) sin α = 1 0.841 0.54 1.56 0.233 0.972 0.24 1.5 0.997 0.0707 14.1 0.8 0.717 0.697 1.03 (2) cos α = √213 , tan α = 32 8◦ 0.139 0.99 0.141 (3) sin α = 1.57 1 0.000796 1260 13.5 Q5. √ 5 5 2 3 , cos α = 3 , tan α = 2 15 8 15 17 , cos α = 17 , tan α = 8 √ √ 7 7 3 4 , cos α = 4 , tan α = 3 √ √ 11 11 5 6 , cos α = 6 , tan α = 5 θ ◦ Q7. (1) cos α = 54 , tan α = 34 (4) 0.3 0.296 0.955 0.309 1.2 0.932 0.362 2.57 1.2◦ 0.0209 1 0.0209 Q6. (1) sin α = 35 , cos α = 45 , tan α = (4) sin α = (5) sin α = (6) 3 4 4 3 (2) sin α = 54 , cos α = 35 , tan α = (3) sin α = (5) 5 12 5 13 , cos α = 13 , tan α = 12 √5 , cos α = √4 , tan α = 5 4 41 41 3 1 √ , cos α = √ , tan α = 3 10 10 Q9. (1) 0.748 or 42.8◦ (7) cos α = √15 , tan α = 2 (8) sin α = 31 , 1 tan α = 2√ 2 (9) sin α = 32 , √ cos α = 35 √3 , √21 tan α = 23 9 sin α = 41 , 9 tan α = 40 sin α = 12 13 , 5 cos α = 13 sin α = √12 , cos α = √12 Q8. (1) 15 (2) 12 (3) 3.4 (5) 1.55 or 88.6◦ √ (10) cos α = 3 5 2 , √ tan α = 614 (11) sin α = 78 , tan α = √715 5 , (12) sin α = 11 √ 4 6 cos α = 11 √ (7) 6 10 √ (8) 6 5 (4) 4.5 (5) 7.5 √ (6) 29 (9) 12.5 (9) 1.25 or 71.6◦ (2) 1.44 or 82.2◦ (6) 1.19 or 68◦ (10) 0.527 or 30.2◦ (3) 0.779 or 44.6◦ (7) 0.89 or 51◦ (11) 0.503 or 28.8◦ (4) 0.308 or 17.6◦ (8) no such angle (12) 0.202 or 11.6◦ Q10. 22.9cm, 23.9cm Q11. 4.10cm, 9.35cm Q12. 3.77cm, 4.60cm Q13. 4.35cm, 4.83cm (4) 0.0463 (7) 20.5 (10) 25.7 (13) 5.6 (16) 159 (2) 23.3 (5) 2.08 (8) 41.8 (11) 28.7 (14) 13.3 (17) 1.82 (3) 1.98 (6) 95.8 (9) 26.2 (12) 71.8 (15) 15.1 (18) 27.6 Q14. (1) 8.75 Q15. 205 Q21. 12.4 Q16. 36.5 Q18. 28.2 m √ Q19. 9 3 ≈ 15.6 Q17. 23.0 m Q20. 8.10 Q23. 4.7 m 8.3 Q24. 4.62 m Q22. 84.3 Q25. 12.8 Trigonometric functions Q26. sin A √ 3 2 √ − 22 √ 2 2 1 2 − 12 √ − 22 √ 2 2 (1) − (2) (3) (4) (5) (6) (7) cos A 1 2 √ 2 2 √ 2 2 √ − 23 √ − 23 √ 2 2 √ − 22 − tan A √ − 3 −1 (8) −1 0 none (9) 1 0 none (10) −1 √ 3 3 (12) 3 3 (13) −1 (14) −1 (15) 43 √ 2 2 √ − 22 − 12 − 12 √ − 23 (11) − √ − 1 2 √ − 23 √ − 22 √ − 22 √ − 23 √ 3 2 − 12 √ − 3 3 1 1 √ 3 3√ − √ 3 3 3 Chapter 8. Trigonometry √ (16) 3 2 √ 3 2 − 21 √ 2 2 √ − 23 − 12 √ 3 2 1 2 √ (17) − (18) (19) (20) (21) (22) √ (25) 3 2 √ 2 2 √ (26) − √ (27) (28) (30) 3 3 (33) − √ − 3 −1 0 (34) (35) (36) − 1 (37) 2 2 2 2 − 1 (38) 3 2 1 2 − 12 √ − 3 (39) √ − 3 3 (40) √ 3 2 − Q27. (1) cos α = − 45 , tan α = − 34 (2) cos α = − √213 , tan α = √ (5) sin α = 1 3 2 (6) sin α = 2 2 √ √1 , tan α 5 √1 2 = −2 (3) sin α = − (7) cos α = (4) sin α = 1 (8) sin α = 13 , tan α = − 2√ 2 21 3 7 , tan α = − 2 9 9 − 41 , tan α = 40 Q28. (1) π2 or 90◦ (2) − π2 or −90◦ (3) 0 ◦ (4) − 3π 4 or −135 (5) − π6 or −30◦ ◦ (6) − 5π 6 or −150 ◦ (7) 5π 6 or 150 3π (8) 4 or 135◦ −1 −1 √ − 3 3 −1 1 √ − 3 1 2 √ √ 3 2 √ 3 2 3 3 √ − 33 − (10) (11) (12) (13) 2π 3 or 120◦ (14) π or 180◦ (17) 0.307 or 17.6◦ (2) −0.561 or −32.2◦ (10) −0.263 or −15◦ (18) −1.38 or −78.8◦ (3) −2.84 or −163◦ (11) 0.374 or 21.4◦ (19) −2.07 or −119◦ (4) −2.3 or −132◦ (12) 2.44 or 140◦ (20) −0.767 or −43.9◦ (5) −2 or −115◦ (13) −2.67 or −153◦ (21) −2.78 or −159◦ (6) −0.114 or −6.55◦ (14) 0.61 or 34.9◦ (22) −1.88 or −107◦ (7) 0.326 or 18.7◦ (15) −0.69 or −39.5◦ (23) −0.46 or −26.4◦ (8) 0.403 or 23.1◦ (16) 0.543 or 31.1◦ (24) 2.45 or 140◦ 8.4 √ 5 3 √ √ cos α = 3 5 2 , tan α = − 614 sin α = − 78 , tan α = √715 √ 5 sin α = 11 , cos α = − 4116 (9) sin α = − 23 , cos α = − (9) π3 or 60◦ (10) − π3 or −60◦ (11) − π4 or −45◦ ◦ (12) − 2π 3 or −120 (9) 2.65 or 152◦ Q29. (1) 2.42 or 139◦ 3 0 2 2 √ − 22 √ − 23 √ 2 2 √ − 22 5 − 13 = 3 √ 2 2 √ − 22 √ − 23 − 21 − 12 12 13 , cos α = − √12 , cos α 1 √ − 12 2 2 1 2 √ √ − 3 √ 2 2 √ 3 2 √ − 12 − 12 2 2 √ 3 3 √ 1 2 √ (32) 0 √ 3 2 3 2 √ 2 2 √ (31) − −1 √ 3 − 12 √ − √ (29) √ − 23 √ − 22 (23) 0 (24) √ − 3 √ − 3 − 12 Trigonometric equations π 6, π 3, π 2, 5π 6 5π 3 5π 2 (8) (4) π, 3π (10) Q30. (1) (2) (3) (5) (6) Q31. (1) (2) (3) (7) (9) π 3π 4, 4 π 11π 6, 6 π 4 π 3 π 6 (11) (12) 7π 11π 6 , 6 2π 4π 3 , 3 5π 7π 4 , 4 5π 7π 6 , 6 −5π −π 7π 11π 6 , 6 , 6 , 6 −4π −2π 2π 4π 8π 3 , 3 , 3 , 3 , 3 (13) (14) (15) (16) (17) (18) (7) 5π 6 3π π (8) − 7π 4 , − 4 , 4 −2π π (9) −5π 3 , 3 , 3 (4) 0 (5) 3π 4 (6) 2π 3 Q32. 44 π 2π 3, 3 π 7π 4, 4 4π 5π 3 , 3 3π 5π 4 , 4 −11π −10π −5π −4π 3 , 3 , 3 , 3 −15π −9π −7π −π 4 , 4 , 4 , 4 (10) −11π −5π π 6 , 6 , 6 (11) −5π −π 3π 4 , 4 , 4 Chapter 8. Trigonometry (1) 30◦ , 150◦ (6) 120◦ , 300◦ (11) 60◦ , 300◦ (16) 270◦ (2) 120◦ , 240◦ (7) 90◦ (12) 150◦ , 330◦ (17) 150◦ , 210◦ (3) 45◦ , 225◦ (8) 180◦ (13) no solutions (18) 30◦ , 210◦ (4) 240◦ , 300◦ (9) 0◦ , 180◦ , 360◦ ◦ (5) 30 , 330 ◦ ◦ ◦ (10) 0 , 180 , 360 Q33. (1) (2) (3) (4) (5) (6) 0.412, 2.73 1.23, 5.05 0.433, 2.71 0.635, 5.65 3.66, 5.76 1.88, 4.41 Q34. (1) (2) (3) (4) 1.11 1.15 0.464 1.89 (7) (8) (9) (10) (11) (12) (5) (6) (7) (8) (14) 90◦ , 270◦ (15) 120◦ , 300◦ ◦ 3.99, 5.44 1.85, 4.43 0.789, 2.35, 7.07, 8.64 1.17, 5.11, 7.45, 11.4 −5.6, −3.82, 0.682, 2.46 −5.73, −0.555, 0.555, 5.73 (13) 3.59, 5.84, 9.87, 12.1 (14) 1.79, 4.49, 8.08, 10.8 (15) −2.74, −0.401, 3.54, 5.88 (16) −3.77, −2.51, 2.51, 3.77 (9) −4.95, −1.8, 1.34 2.85 1.91 1.75 −5.03, −1.89, 1.25 (10) −5.7, −2.55, 0.588 (11) −7.28, −4.14, −0.998 Q35. (1) 11.5◦ , 168◦ (4) 204◦ , 336◦ (7) 26.1◦ , 154◦ (10) −169◦ , −11◦ (2) 72.5◦ , 287◦ (5) 139◦ , 221◦ (8) −76.7◦ , 76.7◦ (11) −112◦ , 112◦ (3) 42◦ , 222◦ (6) 108◦ , 288◦ (9) −120◦ , 59.5◦ (12) −66.5◦ , 113◦ π 5π 6, 6 7π 11π 6 , 6 Q36. (1) 0, π, 2π, (2) (3) (4) (5) (7) 0.34, 2.8, 5.55, 3.87 (8) π6 , 5π 6 , 0.73, 2.41 7π 11π (9) 6 , 6 5π (10) π3 , π2 , 3π 2 , 3 4π 5π (11) π3 , 2π 3 , 3 , 3 (12) 0, π, 2π 7π 11π (13) π6 , 5π 6 , 6 , 6 π 5π 6, 6 , π 3π 2, 2 π 2π 4π 5π 3, 3 , 3 , 3 7π 11π 6 , 6 , 5.76, 3.67, 0.412, 2.73 (6) 8.5 π 5π 3π 6, 6 , 2 (14) (15) π 2π 3 , 3 , 1.98, 4.3 4π 0, 2π 3 , 3 , 2π (16) 1.91, 5.44 (17) (18) (19) 0.841, 2π 4π 3 , 3 , 2.3, π 5π 3, 3 0, π4 , π, 5π 4 (20) (21) 4.37, (22) 3.98 (23) (24) (25) π 3π 5π 7π 4, 4 , 4 , 4 π 2π 4π 5π 3, 3 , 3 , 3 π 5π 7π 11π 6, 6 , 6 , 6 3π 7π 4 , 4 , 1.11, 4.25 π 5π 4 , 4 , 0.464, 3.61 3π 7π 4 , 4 , 2.36, 5.5 Trigonometry in geometry (6) c ≈ 6.96, a ≈ 0.625 (11) b ≈ 2.22, a ≈ 4.42 (16) a ≈ 4.7, c ≈ 3.69 (2) b ≈ 4.89, c ≈ 6.63 (7) b ≈ 4.31, a ≈ 11.6 (12) b ≈ 11.3, c ≈ 1.21 (17) a ≈ 12.1, b ≈ 4.67 (3) a ≈ 8.96, c ≈ 10.5 (8) a ≈ 4.52, c ≈ 2.82 (13) b ≈ 14.1, a ≈ 16.9 (18) b ≈ 13.7, c ≈ 13 (4) c ≈ 8.5, b ≈ 4.14 (9) a ≈ 3.19, b ≈ 6.36 (14) a ≈ 6.67, c ≈ 11.6 (19) b ≈ 2.09, a ≈ 4.94 (5) a ≈ 15.1, b ≈ 5.76 (10) c ≈ 2.68, a ≈ 4.41 (15) c ≈ 9.66, b ≈ 12.6 (20) c ≈ 11.1, a ≈ 10.8 Q37. (1) b ≈ 5.53, c ≈ 7.04 Q38. (1) B ≈ 49.9◦ , C ≈ 85.1◦ or B ≈ 130◦ , C ≈ 4.92◦ ◦ ◦ ◦ ◦ (11) no such triangle (2) B ≈ 61.1 , C ≈ 61.9 or B ≈ 119 , C ≈ 4.11 (12) B ≈ 66.1◦ , C ≈ 41.9◦ (3) A ≈ 6.28◦ , C ≈ 161◦ (13) B ≈ 49.1◦ , A ≈ 86.9◦ or B ≈ 131◦ , A ≈ 5.07◦ (4) C ≈ 13.4◦ , B ≈ 155◦ or C ≈ 167◦ , B ≈ 1.37◦ (14) A ≈ 29.4◦ , C ≈ 109◦ (5) no such triangle (15) C ≈ 56.9◦ , B ≈ 82.1◦ or C ≈ 123◦ , B ≈ 15.9◦ (6) C ≈ 51.8◦ , A ≈ 74.2◦ (16) A ≈ 79.5◦ , C ≈ 26.5◦ or A ≈ 101◦ , C ≈ 5.45◦ (7) B ≈ 36◦ , A ≈ 83◦ (17) A ≈ 31.9◦ , B ≈ 117◦ or A ≈ 148◦ , B ≈ 0.924◦ (8) A ≈ 57◦ , C ≈ 78◦ or A ≈ 123◦ , C ≈ 12◦ (18) B ≈ 67.4◦ , C ≈ 57.6◦ or B ≈ 113◦ , C ≈ 12.4◦ (9) no such triangle (19) B ≈ 14.7◦ , A ≈ 142◦ (10) C ≈ 67.1◦ , A ≈ 36.9◦ (20) C ≈ 60.9◦ , A ≈ 62.1◦ or C ≈ 119◦ , A ≈ 3.88◦ Q39. 45 (1) c ≈ 6.88 (5) b ≈ 5.56 (9) b ≈ 5.47 (13) a ≈ 1.88 (17) b ≈ 3.89 (2) a ≈ 3.14 (6) a ≈ 2.29 (10) a ≈ 8.82 (14) c ≈ 4.9 (18) c ≈ 9.33 (3) c ≈ 3.2 (7) a ≈ 6.6 (11) a ≈ 4.7 (15) b ≈ 2.94 (19) a ≈ 1.75 (4) b ≈ 4.19 (8) c ≈ 7.77 (12) c ≈ 2.22 (16) c ≈ 7.34 (20) b ≈ 8.53 Q40. (1) A ≈ 46◦ (5) B ≈ 22.5◦ (9) B ≈ 117◦ (13) C ≈ 24.1◦ (17) A ≈ 25.8◦ (2) C ≈ 61.8◦ (6) C ≈ 18.6◦ (10) C ≈ 17.6◦ (14) B ≈ 54.8◦ (18) C ≈ 2.1◦ (3) A ≈ 87.1◦ (7) A ≈ 47.5◦ (11) A ≈ 14.6◦ (15) A ≈ 59.8◦ (19) A ≈ 65.2◦ (4) B ≈ 88.1◦ (8) C ≈ 57.5◦ (12) B ≈ 12.1◦ (16) B ≈ 51◦ (20) B ≈ 23.2◦ (8) c ≈ 11.4 c ≈ 3.75 or c ≈ 26 (9) b ≈ 5.78 or b ≈ 29.9 a ≈ 17.9 (10) a ≈ 9.16 or a ≈ 23.1 no such triangle (11) a ≈ 30.6 b ≈ 6.32 or b ≈ 12.4 (12) c ≈ 1.06 or c ≈ 6.56 b ≈ 0.984 or b ≈ 11.1 (13) a ≈ 3.26 or a ≈ 6.94 a ≈ 1.5 or a ≈ 28.3 (14) no such triangle no such triangle √ 3) ≈ 17.1 Q46. (i) 199◦ (i) 25 4 (1 + √ √ √ 5 (ii) 019◦ (ii) 2 (4 + 2 3 + 6 − 2) ≈ 21.2 (iii) 75.2 km Q41. (1) (2) (3) (4) (5) (6) (7) Q42. Q43. (i) 9 √ √ (ii) 9 6 − 3 2 ≈ 17.8 Q48. (i) 56.4 km (ii) 55.4 km (iii) 72.8 km Q45. 6.47 8.6 (16) c ≈ 11.8 or c ≈ 24.3 (17) b ≈ 14.1 (18) c ≈ 2.41 or c ≈ 4.8 (19) a ≈ 14.8 or a ≈ 46.1 (20) b ≈ 1.3 or b ≈ 5.64 (iv) 044◦ (v) 274◦ Q49. 20 km or 52.3 km Q47. 44.7 km, 84.9 km Q44. 146◦ (15) b ≈ 11.9 Q50. (1) both 66.5 km (2) 60.9 km and 30.5 km Arcs, sectors, segments Q51. (1) 10.2 (3) 6.08 (5) 20.6 (7) 5.06 (2) 18.3 (4) 16.6 (6) 11.9 (8) 15.3 Q52. (1) 1.11 (2) 2.15 (3) 40.6 (4) 18.4 (5) 0.117 (6) 0.301 Q53. (1) 3.05 (2) 50.4 (3) 1.53 (4) 0.285 (5) 9.88 (6) 0.622 Q54. (1) 100◦ (2) 66.2◦ (3) 101◦ (4) 66.7◦ (5) 43.5◦ Q55. 2 3 rad or 38.2◦ Q56. 26.4 Q57. (i) 12.5 (ii) 11.6 (6) 36◦ √ Q58. 18.00l Q60. 100( 2π 3 − 3)cm2 ≈ 3 + 2 ≈ 82.6cm Q59. 50(π − 2)cm2 ≈ 57.1cm2 Chapter 9 Geometry 9.1 Polygons Q61. (1) true (6) false (11) true Q62. 20cm2 (2) true (7) false (12) false (3) true (8) false (13) false (4) false (9) true (?) (14) true Q63. 252cm2 √ Q64. 32 3 ≈ 55.4 (5) true 9.2 Q65. 64 (10) false Circles 46 Q66. 67◦ or 113◦ Q72. E F̂ G = 80◦ , E D̂G = 100◦ or E F̂ G = 100◦ , E D̂G = 80◦ Q67. 156 √ Q68. 27 3cm √ Q69. 24 3 ≈ 41.6 Q85. 2 : 1 Q86. A = 30◦ , B = 60◦ , S = 90◦ Q80. 9cm2 √ Q81. 8 2cm2 Q75. A = 31◦ , √ Q82. 32 3cm2 Q83. 128cm2 √ Q84. 27 3 Q77. 78.5◦ √ Q78. 16 2 √ Q79. 24 3cm2 Q74. A = 58◦ , B = C = 61◦ Q70. 16cm √ Q71. 36 3 ≈ 62.4 Q87. — Similarity Q88. (1) 4.5 Q89. Q76. 180cm2 Q73. 34◦ 2 9.3 B = 59◦ , C = 90◦ 2 3r Q90. (2) — Q91. 140 3 Q92. — 9.4 2 3r √ √ 16 3 6 Q93. 43.56 Q96. 3 Q94. 4 : 1 Q97. equal Q95. 6.4 Q98. 3 : 1 Q99. (i) 16 (ii) 5 : 3 Q100. — Solid geometry √ Q111. cube, 3 2 : 16 √ Q101. V = 9 2 2 , √ A=9+9 3 √ Q102. 36 + 36 7 Q106. 25m40cm √ Q107. 3 3 : 1 √ Q108. 3 3 : 1 Q112. cube, 2 : 9 √ Q113. V = 83 , A = 4 3 Q103. 224cm3 √ Q104. 1.024 6 ≈ 2.51(m3 ) Q109. 1 : 6 √ Q105. 141cm Q110. 3 : 9 9.5 Q114. regular octahedron, 1:2 Q115. regular tetrahedron, 1 : 27 Q116. 30.2% Q117. 12.3% √ (i) 2 2 Q118. √ (ii) 2 3 Miscellaneous problems Q119. 2 √ Q120. 81( 2 − 1) √ Q121. (1) 3 2 − 4 Q124. 1.55 Q127. 5 Q125. (1) 1 Q128. (2) 1.44 Q122. — Q123. 1.46 Q126. √ 2 3 (2 √ 10 3 Q134. 2 2 Q129. 65 (3) 0.95262 √ 2 Rr √ (4) √R+ r (2) — √ Q133. 5 2 3 − 3) Q135. Q130. — 25π 4 (2 − √ Q131. 36 3 Q136. 154.9m2 Q132. — Q137. 50% √ Chapter 10 Numbers II 10.1 Factorials and binomial theorem Q1. (1) 6 (2) 24 (3) 120 (4) 720 (5) 5040 Q2. (1) 7 (2) 8 (3) 12 (4) 110 (5) 380 Q3. (1) 7 (2) 5 (3) 8 Q4. (1) 3 (4) 10 (7) 6 (10) 15 (13) 35 (2) 4 (5) 10 (8) 15 (11) 21 (14) 56 (3) 6 (6) 5 (9) 20 (12) 35 (15) 28 Q5. 47 3) ≈ 5.26 Chapter 10. Numbers II n(n+1) 2 (1) (2) 3n(3n−1) 2 (3) 10.2 Logarithms 10.2.1 Algebra of logarithms Q6. (1) 3 (2) 1 4 n(n−1) 2 (4) n(n+1) 2 (5) (4) 25 2 (5) 46 = 212 √ 2 2 (3) Q7. (1) 3 (6) − 12 (11) 2.5 3 2 2 3 3 2 1 4 (7) − 32 (12) (8) −3 (13) −5 (18) (9) − 74 (14) 5 (19) − 83 (15) −2 (20) (2) (3) (4) (5) (10) 3.5 Q8. (1) 2b (2) a + b Q9. (1) a + 2b (16) − 32 5 4 (17) (22) − 74 3 5 1 2 (24) 1 5 6 (25) 2 × 3 4 (6) 3 + a + 3b (8) 3 + 2a (5) a + 6b (7) (6) 6b (8) a +b 1 a (5) 3 a (4) 1 + 1 2a (6) Q11. (1) −a − 3b (2) Q12. (1) a − 2b − 12 c (2) 3a + 12 b − 2c) −b 1 2a 1 3a (7) (8) 1 2a (3) a − 21 b (4) 1 − 4a − 32 b (3) 2.5a − 1.5b − c (4) −4a − 2.5b − 43 c (3) a = 4, b = 1 (5) a = 3, b = 1 (2) a = 2, b = 1 (4) a = 3, b = 3 (6) a = 4, b = 2 3 4 (2a Q15. (1) √ − 1) (2) 3 4 (4) 3( 3 ) Q16. (1) 2a (5) a 2 (6) a (3) 32a (4) 8a2 10.2.2 Q17. (1) (7) a3 (8) (3) 8 Q18. (1) no solutions 10.2.3 Q19. 14−8a 3a−3 √ (5) 2 2 (7) 1 4 (6) (9) c2 (13) (10) a4 (14) 1 a4 3 (15) (11) 1 b2 (4) (12) b (16) Logarithmic equations 27 64 (2) 27 (2) 1 3 3b 2 3 2a−1 (3) (3) 8 (2) 25 (2) 2a+3 4a−2 11 4 + 4b 2+5a 3 5 2a Q13. (1) a = 2, b = 2 Q14. (1) 1 12500 √2 3 (23) (4) 3 + b (3) (2) 2a 3 4 (21) (7) 3a 1 2a 1 9 (8) 8 1 2 16 a 1 c 16 a 729 b2 √ 3 (17) c4 (18) (19) (20) (21) 1 6 8a 256 a12 (22) (23) ac 6 b 243 2 (24) (10) x = 64 π3 1 8 1 5 or (5) 55 = 3125 √ (6) 3 2 (8) (3) 7 (5) − 12 (7) 0.1 (6) 9 (8) no solutions 1 2 (11) x = (9) no solutions 17 4 (12) x = Q20. (i) 15 litres Q21. (i) 0.242 ≈ 0.167 (ii) 34.3 minutes (ii) 965 thousands (iii) 39.9 years (iii) 228 minutes (iii) 29 (ii) a2 b4 18 (7) Aplications 1 6 1 3 25 c5 (4) 9 (4) (i) 5 milion (n+2)(n+1)n 6 (6) 11 × 3n (5) 2 + a + b (4) a + 2b Q10. (1) −a (6) (3) 2a + b (3) (2) 2a + 4b 2n(2n−1) 2 48 x=5 10.3 Absolute value equations and inequalities Q22. (1) (2) (3) (4) (5) (6) (7) x 6= −2 x ∈] − ∞, 1[∪]2, +∞[ x ∈] − ∞, −2] ∪ [ 43 , +∞[ x∈R x ∈] − 94 , − 14 [ x∈∅ x ∈ [− 25 , − 12 ] (8) (9) (10) (11) (12) (13) (14) (2) −2 < x < 0 (3) (4) ≤x≤0 ≤x≤5 Q24. (1) 1.6 ≤ x ≤ 4 10.4 (6) − 25 < x < 2, x 6= (7) − 32 ≤ x ≤ − 61 , x 6= − 21 5 2 (15) x = (16) x ∈ R (17) x ∈] − ∞, 1] ∪ [4, +∞[ (18) x ∈ [ 34 , 2] (19) x ∈] − ∞, − 72 [∪] 12 , +∞[ (20) x ∈] − 43 , 83 [ (5) x < −4 or −4 < x < − 52 or x > 2 Q23. (1) x < 0 or x > 2 − 23 − 15 x∈∅ x∈R x ∈] − 12 , 92 [ x ∈ [− 32 , 12 ] x ∈] − ∞, − 32 ] ∪ [ 29 , +∞[ x ∈] − ∞, 23 [∪]2, +∞[ x∈∅ (8) 0 < x < 4 (9) x < −1 or −1 < x ≤ − 81 or x ≥ 2.5 1 2 (10) 4 5 ≤x≤ (3) − 72 < x < −1 (2) x < 1 or x > 3.5 16 3 (4) −1 ≤ x ≤ 3 Complex numbers Q25. (1) 2 + 11i (2) 11 + 13i Q26. (1) 2 5 − 15 i (2) 1 − 17i (3) 20 (5) −9 + 2i (7) 9 + 12i (4) 13i (6) 19 − 9i (8) 8 + 0.25i (5) 7 + 6i (7) −1 − 34 i (3) + 45 i (4) −12 + 5i Q27. (1) 2 − 11i (2) −11 − 2i 10.5 3 5 (6) 1 + 21i (8) −8 41 + 31 41 i (9) −6 − 8i (10) −10 + 10i (9) 6 − 8i (10) 7 10 + √ (5) −8 − 8i 3 √ (6) −16 + 16i 2 (3) −4 (4) −64 1 10 i (11) 13 (12) 4 − 7i (11) −5 + 12i (12) 8 − i √ (7) −16 + 16i 3 (8) 1 Mathematical induction Q28. — Chapter 11 Quadratics and polynomials 11.1 Vieta’s formulae for quadratics Q1. (1) 2; different signs (6) 2; different signs (11) 2; both positive (16) 2; different signs (2) 2; both negative (7) 1; positive (12) 2; different signs (17) 2; both positive (3) 0 (8) 2; both positive (13) 2; both negative (18) 2; both negative (4) 1; negative (9) 0 (14) 1; positive (19) 2; different signs (15) 2; both positive (20) 2; both negative (5) 2; both negative (10) 2; both positive Q2. 0 < m < 1 Q3. −2 < m < 0 Q7. Q6. 2 9 <m< 1 3 <m≤ Q8. 0 ≤ m ≤ Q4. no such m Q5. −2.5 < m ≤ −0.5 or m ≥ 0.5 1 3 √ 2+ 6 4 √ −7+5 2 2 Q9. −2 < m < − 12 √ Q10. m ≤ −10 − 6 3 or m > 2 49 Chapter 11. Quadratics and polynomials Q11. √ 18−8 3 11 Q12. 4 3 ≤m< ≤m< 2 3 (ii) −1 < m ≤ 3 2 (i) m < 0 or m ≥ Q13. 11.2 Q15. (1) (2) Q14. √ 7+4 2 3 √ 7−4 2 , 3 x 6= 1 3 √ (i) m < −2 or m ≥ 10 + 6 3 √ (ii) −1 < m ≤ 10 − 6 3, and m 6= − 21 Algebraic fractions x+2 2x+1 2x−3 x+2 (3) (4) 3x−2 2x+5 2x+1 2x+3 (5) (6) 3x−2 2x+3 3x−2 2x−3 (8) 5x+1 5x−1 2x+5 5x+2 (7) (9) (10) 8x+2 x−2 6x−5 2x+1 (11) (12) 2x−5 5x+2 −3x+4 2x+1 (4) 24x2 −22x+4 5 (6) 2x2 −3x+1 2x2 +3x+1 (8) 2x2 +7x+6 2x2 −7x+6 (5) 6 6x2 +x−1 (7) −4x+6 6x+3 (9) 6x2 −x−1 6x2 +x−1 5x+12 (x+2)(x+3) (4) −12 (2x+1)(2x−3) (7) 17x+7 (5x+1)(x+2) (10) 3x−1 (6x−5)(3x−2) (2) −x (2x−3)(x−2) (5) 4x+3 (3x−4)(2x−1) (8) 8x+14 (2x+5)(2x−1) (11) 4x+19 (2x−5)(5x+2) (3) 24x (3x−2)(3x+2) (6) 14x+16 (3x−2)(2x+5) (9) −18x+5 (6x+2)(3−2x) (12) −6x+7 (4−3x)(2x−3) 7x2 +x−5 (2x+1)(x−2)(x+3) (4) −14x−8 (2x+3)(3x−2)(2x−3) (7) 10x2 +29x−1 (5x−1)(3x+2)(x+2) (10) 12x2 −6x−2 (2x+1)(3x+1)(3x−2) (2) x2 +7x+13 (x+2)(x+3)(x−2) (5) 14x2 −3x+3 (2x+3)(2x−3)(2x+1) (8) 11x2 +7x−4 (5x+2)(3x)(2x−1) (11) −19x2 −25x (5x+2)(3x)(5x+2) (3) −36x+5 (2x+5)(2x−5)(3x−2) (6) 21x2 −20x−1 (2x−3)(5x−1)(2x+5) (9) 20x2 −2x−4 (x−2)(3x−2)(2x−3) (12) −15x2 +18x+10 (2x+1)(5x+2)(2x−3) 4x+8 Q16. (1) − 3x−2 (2) − 23 Q17. (1) Q18. (1) 11.3 (3) 2 3 Equation of a circle Q19. (1) centre: (2, 1), radius =5 (2) centre: (0, −2), radius =4 (3) centre: (3, 0), radius =3 (4) centre: (4, −4), radius =4 (5) centre: (1.5, −2.5), radius =3 Q20. (1) (2) (3) (4) (5) (6) (5, 5), (−2, 4) (4, −5), (5, −2) (4, 7), (8, −5) (6, 5), (−2, 3) (−3.5, 2.5), (0.5, −9.5) (3, 1), (−9, 9) (10) centre: (−1.5, (6) centre: (−5, 2), radius =7 √ −0.5), √ radius =2 2 (7) centre: (−3, 1), radius =3 2 √ √ (8) centre: (1, 1.5), radius =4 3 (11) centre: (2, 0.5), radius =5 3 (7) (8) (9) (10) (11) (12) (−10, −3), (−2, −7) (8, 0.5), (6, −3.5) (2, 6.5), (−10, 0.5) (5.5, −6.5), (0.5, −9.5) (9, −3.5), (1, 8.5) (9.5, −1), (7.5, −9) (2) (6, 2), (9, −2) Q28. (3) (−2, −2), (6, 2) (14) (1, 1) (15) (−1, −3) (16) (−2, 1) √ √ 13 or 5 13 √ Q29. b = 2 or b = −4, r = 4 2 (4) (−2, −2), (0, 4) Q22. (x − 8)2 + (y − 1)2 = 25 √ Q30. a = 2 or a = −10, r = 4 5 Q23. (x + 2.5)2 + (y + 0.5)2 = 32.5 625 16 Q31. 2 or 1 2 Q25. (x − 4)2 + (y − 10)2 = 180 Q32. −3 or − 31 Q26. (−1.5, 4) or (−0.5, 2) Q33. −6 or 14 11.4 (13) (2, 1) Q27. (−5.5, −3.5) or (3.5, −0.5) Q21. (1) (8, 1), (7, 2) Q24. (x − 3)2 + (y − 34 )2 = (12) centre: (0.5, √ −3), radius =2 10 (9) centre: (−3, √ 1.5), radius =3 2 Polynomials Q34. 50 Chapter 11. Quadratics and polynomials (1) x ∈]1, +∞[ (7) x ∈] − ∞, −3] ∪ [−1, 1] (13) x ∈] 23 , 32 [∪] 32 , +∞[ (2) x ∈] − ∞, 1] (8) x ∈] 13 , 21 [∪] 12 , +∞[ (14) x ∈ { 35 }[ 34 , +∞[ (3) x ∈] − ∞, 0[ (9) x ∈] − ∞, − 13 [ (15) x ∈] − ∞, −2[∪] 14 , 3[ (4) x ∈ {−1}[0, +∞[ (10) x ∈] − ∞, − 23 [∪] − 23 , − 23 [ (16) x ∈] − ∞, −5] ∪ { 57 } (5) x ∈] − ∞, −1] ∪ [0, 3] (11) x ∈ [−1, 12 ] ∪ [2, +∞[ (17) x ∈ { 73 }[ 12 5 , +∞[ (6) x ∈] − 1, 1[∪]1, +∞[ (12) x ∈] − ∞, 32 ] ∪ { 32 } (18) x ∈] − ∞, − 32 [∪] − 23 , 32 [ Q35. (1) x ∈] 15 , +∞[ (7) x ∈] − ∞, −3] ∪ [−1, 0] (13) x ∈]0, 32 [∪] 32 , +∞[ (2) x ∈] − ∞, 52 ] (8) x ∈]0, 12 [∪] 12 , +∞[ (14) x ∈ [0, 53 ] ∪ [ 34 , +∞[ (3) x ∈] − ∞, 0[ (9) x ∈] − 31 , 0[∪] 32 , +∞[ (15) x ∈] − ∞, −2[∪]0, 14 [ (4) x ∈ {−2} ∪ [0, +∞[ (10) x ∈] − ∞, − 23 [∪]0, 13 [ (16) x ∈] − ∞, −5] ∪ [0, 57 ] (5) x ∈] − ∞, −1] ∪ [0, 2] (11) x ∈] − ∞, −1] ∪ [0, 12 ] 7 (17) x ∈ [− 10 3 , 0] ∪ [ 3 , +∞[ (6) x ∈] − 1, 0[∪]1, +∞[ (12) x ∈] − ∞, 0] ∪ [ 32 , 32 ] (18) x ∈] − ∞, − 32 [∪]0, 32 [ (7) x ∈ [−4, −2] ∪ [4, +∞[ (13) x ∈] − 23 , 32 [∪] 32 , +∞[ (2) x ∈] − ∞, −2] ∪ [1, 2] (8) x ∈] − ∞, − 32 [∪] 12 , 23 [ (14) x ∈] − ∞, 34 ] (3) x ∈] − 12 , 14 [∪] 12 , +∞[ (9) x ∈] − ∞, − 23 [∪] 12 , 23 [ (15) x ∈] − 14 , 15 [∪] 14 , +∞[ Q36. (1) x ∈] − 3, 2[∪]3, +∞[ (4) x ∈ [− 32 , − 12 ] ∪ [ 23 , +∞[ (10) x ∈] − ∞, − 13 [ (16) x ∈] − ∞, − 57 ] ∪ [ 43 , 75 ] (5) x ∈] − ∞, − 52 ] ∪ [1, 52 ] (11) x ∈ [− 12 , 25 ] ∪ [ 12 , +∞[ (17) x ∈ [− 73 , 32 ] ∪ [ 73 , +∞[ (6) x ∈] − 53 , 32 [∪] 53 , +∞[ (12) x ∈ {− 32 }[ 32 , +∞[ (18) x ∈] − ∞, − 32 [ (7) quotient: x3 − x2 − 2x + 3, remainder: 2x − 1 Q37. (1) quotient: x3 + 3x2 − 2x − 1, remainder: 1 (2) quotient: x3 − x2 − 2x + 3, remainder: −1 (8) quotient: x3 + 2x2 − 2x + 3, remainder: 2x + 3 (3) quotient: 2x4 − 2x3 − 3x2 + 6x + 3, remainder: 6 (9) quotient: x4 + x3 − x2 − 2x + 3, remainder: −1 (4) quotient: 3x4 − x3 − 2x + 3, remainder: −5 (10) quotient: 2x4 + 5x3 − x2 − 2x + 3, remainder: 2x − 3 (5) quotient: −x4 + 2x2 − 2x + 1, remainder: −7 (11) quotient: 3x4 + x3 + 2x2 − 2x + 3, remainder: 3x − 2 (6) quotient: −2x4 + 3x2 − 2x + 1, remainder: −4 (12) quotient: 2x4 + x3 − 2x2 + 3, remainder: 4x 2x+1 3x2 −2 2x + 3 + x23x−1 +x−2 x+4 x + 3 + x2 −2x−3 3x2 + x + 3x3x−5 2 +x−2 Q38. (1) x3 + 3x2 − 2x − 1 + (2) 4x2 − (3) 2x3 − 3 (4) 2x − Q39. (1) −3 (4) (2) 3 (5) (3) 12 (6) −x+4 x2 −3x+2 4 2x3 − 4x2 + 3x + 1 + x2 −2x+1 x3 − 6x2 − x + 1 + 2x25x+6 −3x−2 3 2 2x − x − x − 1 + −3x2−8 +2x−1 (5) 3x3 − 5x2 + 4x − 2 + (6) (7) (8) 7 2 5 3 281 8 (11) (12) (10) (8) − 89 (11) − 11 32 (9) − 34 (12) (i) − 12 Q43. (ii) (x + 1)(2x + 1)(x − 2) (i) 2 (ii) (2x − 5)2 (x − 2) Q41. (i) − 13 Q44. (ii) (x + 2)(x − 3)(3x + 1) (i) −4 (ii) (x + 4)(x − 5)(3x − 4) Q42. (i) 32 (ii) (2x − 3)2 (2x − 3) (i) 2 (ii) (3x + 5)2 (x − 2) 51 (10) 4 (7) − 25 Q40. Q45. 5x+6 x2 −3x+5 4x3 − 3x2 + 2x − 1 + x2−x+5 −2x+3 3x+3 3 2 2x − x + 3 + 2x2 +2x−1 x3 + 2 + x22x−1 +x−1 (9) x3 + 2x2 + 3x + 4 + Q46. 9 4 40 9 (i) − 43 (ii) (4x − 1)(4x + 3)(2x − 1) Q47. (i) − 34 (ii) (3x − 2)(3x + 1)(3x + 4)
© Copyright 2026 Paperzz