Me, My Brain and I: Building a Healthy Brain for Today and Tomorrow SEMINAR IN COGNITIVE NEUROSCIENCE Alyssa Martini, Jeff Mercurio, Valeria Moya • Less than 5% of adults participate in 30 minutes of physical activity each day • The American College of Sports Medicine recommends adults exercise 150 minutes per week in multiple intervals • Exercise induces the production of brain cells in areas dedicated to memory and learning! • Alzheimer’s Disease is the sixth leading cause of death in the U.S. • in the brain • Structures of the brain • Alzheimer’s disease • and effects of exercise on the brain • More brain cells • Memory improvement • What kind of exercise should we • • Effective forms of exercise Intensity of exercise in? These structures are seen to decay with aging • Prevents deterioration (Smith et al., 2014) • Increases cell survival (van Praag et al., 1999a) • Creates positive effects on • van Praag, Kempermann and Gage (1999) • Animal study • • • • • Mice Learner: Water-maze Swimmer: Forced to swim (involuntary exercise) Runner: Allowed to run (voluntary exercise) Enriched: Large bi-level cages, tubes, social interactions Control: No altered condition • Runners showed improvement in hippocampus! • Double the amount of newborn cells (neurogenesis) • Higher amount of cell survival (cellular retention) Figure 1 BrdU-positive cell number one day after last injection (a) BrdU-positive cell number 4 weeks after the last injection (b) (van Praag et al., 1999a) This could mean better memory and learning ability! • Smith et al. (2014) • • • • Age range: 65 to 89 years N = 97 MRI @ Baseline 18-month follow-up Conditions • High risk/Low PA • High risk/High PA • Low risk/Low PA • Low risk/High PA Hippocampal volume decreased by 3% in High risk/Low PA group! More cells = better cognition • Follow-up by Colcombe et al. (2006) • 59 older adults • Ages 60-79 • Random assignment to either: • Aerobic exercise program • Non-aerobic stretching and toning program • Three sessions for 1 hour per week • 6 month period • Aerobic exercise had increases in brain volume • • Impulse control • General intelligence • • Effective long-term memory • Anterior tracts • Communication between brain hemispheres These regions play key roles in successful everyday functioning! Larger brain volume = more cells = better cognition • Geda et al. (2010) • 1,126 participants without mild cognitive decline • 198 participants with mild cognitive decline • Age range • 70-89 • Moderate exercise decreased risk of mild cognitive decline • Bicycling, hiking, yoga, brisk walking, moderate use of exercise machines • The American College of Sports Medicine recommends that adults perform moderate exercise at least 150 minutes per week EXERGAMING An emerging type of video-gaming that replaces traditional buttonpressing with body movements Nintendo Wii U Xbox Kinect https://www.youtube.com/watch?v=imecLkxRGiE • Aging causes natural structural and mental decline • Functional deficits • This decline could possibly be delayed with exercise! • Exercise has physical benefits that help us mentally • Increases • Increases • Increases volume volume volume • We should take part in exercising! • Aerobics works well • Moderate is better: 150mins/wk Adlard, P. A., Perreau, V. M., Pop, V., Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in transgenic model of Alzheimer’s disease. The Journal of Neuroscience, 25(7):4217-4221. DOI: 10.1523/JNEUROSCI.0496-05.2005 Best, J. R. (2013). Exergaming in youth: Effects on physical and cognitive health. Zeitschrift für Psychologie 221(2):72-78. DOI: 10.1027/2151-2604/a000137 Colcombe, S. J., Erickson, K. I., Ratz, N., Kim, J. S., Webb, A. G., Cohen, N. J., … Kramer, A. F. (2008) Aerobic fitness reduces brain tissue loss in aging humans. Journal of Gerontology, 61A(11):1166-1170. DOI: 10.1093/gerona/61.11.1166 Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006) Aerobic Exercise Training Increases Brain Volume in Aging Humans. Journal of Gerontology, 58A(2):176-180. DOI: 10.1093/gerona/58.2.M176 Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7):3017-3022. DOI: 10.1073/pnas.1015950108 Geda, Y.E., Knopman. D. S., Roberts R.O., Christianson, T.J., Pankratz, V.S., Ivnik, R.J., … Rocca, W.A. (2010). Physical Exercise, Aging and Mild Cognitive Impairment: A Population-Based Study. Jama Neurology, 67 (1). DOI: 10.1001/archneurol.2009.297 Gould, E., Beylin, A., Tanapat, P., Reeves, A., Shors, T. J. (1999). Learning enhances adult neurogenesis in the hippocampal formation. Nature Neuroscience, 2(3):260-265. DOI: 10.1038/6365 Hillman, C. H., Erickson, K. I., Kramer, A. F. (2008). Be smart, exercise your heart: exercise effects on brain and cognition. Nature Publishing Group, 9:58-65. Retrieved from http://www2.pitt.edu/~bachlab/LabSite/Publications.html/hillman2008.pdf Ide, K. and Secher, N. H., (2000). Cerebral blood flow and metabolism during exercise. Progress in Neurobiology, 61(4):397-414. DOI: 10.1016/S03010082(99)00057-X Smith, J. C., Nielson, K. A., Woodard, J. L., Seidengberg, M., Durgerian, S., … Rao, S. M. (2014). Physical activity reduces Hippocampal atrophy in elders at genetic risk for Alzheimer’s disease. Frontiers in Aging Neuroscience, 6(61):1-7. DOI: 10.3389/fnagi.2014.00061 van Praag, H., Kempermann, G., Gage, F. H. (1999a). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature America, 2(3):266-270. DOI: 10.1038/6368 van Praag, H., Christie, B. R., Sejnowski, T. J., & Gage, F. H. (1999b). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proceedings of the National Academy of Sciences of the United States of America. Retrieved from http://www.jstor.org/stable/49182 van Praag, H., Shubert, T., Zhao, C., Gage, F. H. (2005). Exercise enhances learning and hippocampal neurogenesis in aged mice. The Journal of Neuroscience, 25(38):8680-8685. DOI: 10.1523/JNEUROSCI.1731-05.200
© Copyright 2025 Paperzz