333200_10a_AN.qxd 12/9/05 2:42 PM Page A187 A187 Answers to Odd-Numbered Exercises and Tests (b) Chapter 10 Section 10.1 1. inclination m2 m1 3. 1 m1m2 1. 9. 13. 17. 21. 25. 29. 33. 5 (page 732) 2 2. tan Ax1 By1 C 4. A2 B2 3. 1 5. 3 1 m −4 −3 −2 −1 37. 0 45. (a) y 6 6 12 5 9 6 2 3 1 x x −3 3 6 9 − 4 − 3 − 2 −1 −1 12 −3 1 2 3 4 −2 Section 10.2 (page 740) Vocabulary Check 1. conic 4. axis 4 B 4 B 3 3 (page 740) 2. locus 5. vertex 3. parabola; directrix; focus 6. focal chord 7. tangent 2 2 A 1 C (b) 4 4 5 5 −1 A −1 3 61. x-intercept: 7, 0 63. x-intercepts: 5 ± 5, 0 y-intercept: 0, 49 y-intercept: 0, 20 7 ± 53 65. x-intercepts: ,0 2 y-intercept: 0, 1 2 2 324 67. f x 3x 13 49 69. f x 5x 17 3 5 5 324 Vertex: 13, 49 Vertex: 17 3 5, 5 1 2 289 71. f x 6x 12 24 1 Vertex: 12 , 289 24 y y 73. 75. 7. 3.2236 837 43. 1.3152 37 47. y (a) 41. 7 2 −2 3 3 radians, 135 11. radian, 45 4 4 0.6435 radian, 36.9 15. 1.0517 radians, 60.3 2.1112 radians, 121.0 19. 1.2490 radians, 71.6 2.1112 radians, 121.0 23. 1.1071 radians, 63.4 0.1974 radian, 11.3 27. 1.4289 radians, 81.9 0.9273 radian, 53.1 31. 0.8187 radian, 46.9 2, 1 ↔ 4, 4: slope 32 4, 4 ↔ 6, 2: slope 1 6, 2 ↔ 2, 1: slope 14 2, 1: 42.3; 4, 4: 78.7; 6, 2: 59.0 4, 1 ↔ 3, 2: slope 37 3, 2 ↔ 1, 0: slope 1 1, 0 ↔ 4, 1: slope 15 4, 1: 11.9; 3, 2: 21.8; 1, 0: 146.3 7 39. 5 1 (d) The graph has a horizontal asymptote at d 0. As the slope becomes larger, the distance between the origin and the line y mx 4, becomes smaller and approaches 0. 1 2 3 (c) 8 4 x 5 6 1 −2 − 1 −1 C 1 2 3 x 4 5 −2 (b) 35 3537 (c) 74 8 53. 31.0 49. 22 51. 0.1003, 1054 feet 55. 33.69; 56.31 57. True. The inclination of a line is related to its slope by m tan . If the angle is greater than 2 but less than , then the angle is in the second quadrant, where the tangent function is negative. 4 59. (a) d m 2 1 1. A circle is formed when a plane intersects the top or bottom half of a double-napped cone and is perpendicular to the axis of the cone. 3. A parabola is formed when a plane intersects the top or bottom half of a double-napped cone, is parallel to the side of the cone, and does not intersect the vertex. 5. e 6. b 7. d 8. f 9. a 10. c 11. Vertex: 0, 0 13. Vertex: 0, 0 Focus: 0, 12 Focus: 32, 0 1 Directrix: y 2 Directrix: x 32 y y 4 5 3 4 3 2 − 6 − 5 −4 − 3 −2 − 1 1 x −1 1 2 3 −3 −4 x 1 2 CHAPTER 10 35. 3 6 (page 732) Vocabulary Check (c) m 0 d 333200_10a_AN.qxd 12/9/05 A188 2:42 PM Page A188 Answers to Odd-Numbered Exercises and Tests 15. Vertex: 0, 0 Focus: 0, 32 Directrix: y 32 17. Vertex: 1, 2 Focus: 1, 4 Directrix: y 0 y y − 4 −3 45. y 2 2 8 x 5 47. x 2 8 y 4 2 49. y 2 8x 51. y 6x 1 3 10 53. 2 4 1 3 3 4 1 −2 −3 −10 x −3 −2 −1 1 2 3 4 5 −4 −3 −5 −4 −6 19. Vertex: 32, 2 Focus: 32, 3 Directrix: y 1 0 6 4 2 1 x 1 2 3 23. Vertex: 2, 3 Focus: 4, 3 Directrix: x 0 4 p=1 −18 −14 −4 10 As p increases, the graph becomes wider. (b) 0, 1, 0, 2, 0, 3, 0, 4 (c) 4, 8, 12, 16; 4 p (d) Easy way to determine two additional points on the graph x 75. ± 1, ± 2, ± 4 m 1 2p 1 ± 2 , ± 1, ± 2, ± 4, ± 8, ± 16 81. 12, 53, ± 2 f x x3 7x 2 17x 15 B 23.67, C 121.33, c 14.89 C 89, a 1.93, b 2.33 A 16.39, B 23.77, C 139.84 B 24.62, C 90.38, a 10.88 −2 −12 −4 18 −3 x −6 73. −8 77. 79. 83. 85. 87. 89. 27. Vertex: 14, 12 Focus: 0, 12 Directrix: x 12 4 −10 p=4 4 2 −6 2 225 x 106 units 1 2 63. (a) y 640 (b) 8 feet x 65. (a) 17,5002 miles per hour 24,750 miles per hour (b) x 2 16,400 y 4100 67. (a) x2 64 y 75 (b) 69.3 feet 69. False. If the graph crossed the directrix, there would exist points closer to the directrix than the focus. 71. (a) p = 3 p = 2 21 25. Vertex: 2, 1 Focus: 2, 12 Directrix: x 2 y −8 x −2 −2 57. 4x y 2 0; 12, 0 1 2 61. y 18 x 0 y 8 7 6 5 4 3 − 10 2, 4 55. 4x y 8 0; 2, 0 59. 15,000 21. Vertex: 1, 1 Focus: 1, 2 Directrix: y 0 y −7 −6 −5 −4 −3 −2 −1 25 2 x 1 −1 −5 2 −4 29. x 2 32 y 31. x 2 6y 33. y 2 8x 2 2 35. x 4y 37. y 8x 39. y 2 9x 2 41. x 3 y 1 43. y 2 4x 4 Section 10.3 (page 750) Vocabulary Check 1. ellipse; foci 3. minor axis (page 750) 2. major axis; center 4. eccentricity 333200_10a_AN.qxd 12/9/05 2:42 PM Page A189 A189 Answers to Odd-Numbered Exercises and Tests 1. b 2. c 3. d 7. Ellipse Center: 0, 0 Vertices: ± 5, 0 Foci: ± 3, 0 3 Eccentricity: 5 4. f 19. Ellipse 21. Circle Center: 2, 3 Center: 1, 2 Vertices: 2, 6, 2, 0 Radius: 6 y Foci: 2, 3 ± 5 5 6 Eccentricity: 3 5. a 6. e 9. Circle Center: 0, 0 Radius: 5 y 6 2 y 4 y 6 −6 −2 2 −6 4 −2 2 4 4 6 2 4 6 2 4 8 −6 −2 2 −6 6 x −2 −2 −4 x 2 −4 x −8 −6 6 2 −6 −4 −10 x −2 2 −2 −6 11. Ellipse Center: 0, 0 Vertices: 0, ± 3 13. Ellipse Center: 3, 5 Vertices: 3, 10, 3, 0 Foci: 3, 8, 3, 2 Eccentricity: 35 Foci: 0, ± 2 Eccentricity: 32 y 23. Ellipse Center: 3, 1 Vertices: 3, 7, 3, 5 Foci: 3, 1 ± 26 6 Eccentricity: 3 − 10 8 4 2 −8 x − 4 −2 y y 12 2 8 25. Ellipse 4 x −4 −3 −1 6 1 1 3 4 2 −2 x −8 −6 −4 2 −2 4 6 15. Circle Center: 0, 1 Radius: 23 y 1 −2 x −1 1 −4 −4 y 5 6 Center: 3, 4 2 2 5 5 Vertices: 9, , 3, 2 2 −4 2 4 6 10 −2 5 Foci: 3 ± 33, 2 −6 3 −8 Eccentricity: 2 27. Circle 29. Ellipse Center: 1, 1 Center: 2, 1 Radius: 23 Vertices: 73, 1, 53, 1 26 y Foci: 34 15 , 1, 15 , 1 4 Eccentricity: 5 3 2 −1 −2 x y −3 2 17. Ellipse Center: 2, 4 Vertices: 3, 4, 1, 4 4 ± 3 Foci: , 4 2 3 Eccentricity: 2 y −3 −2 −1 1 −1 3 x −2 −3 −2 x −1 2 1 −1 1 −3 x −4 −5 1 2 3 CHAPTER 10 −6 4 333200_10a_AN.qxd 12/9/05 A190 2:42 PM Page A190 Answers to Odd-Numbered Exercises and Tests 31. 33. 4 −4 −6 67. False. The graph of x24 y4 1 is not an ellipse. The degree of y is 4, not 2. y2 x2 69. (a) A a 20 a (b) 1 196 36 (c) a 8 9 10 11 12 13 2 5 6 −4 −4 Center: 0, 0 Center: Vertices: 0, ± 5 Vertices: 1 Foci: 0, ± 2 Foci: 12 ± 2, 1 x2 y2 x2 y2 y2 x2 1 37. 1 39. 1 4 16 36 32 36 11 2 2 2 2 21x y x 2 y 3 1 43. 1 400 25 1 9 x 2 2 y 3 2 1 16 9 x 2 2 y 4 2 y 4 2 x2 49. 1 1 4 1 48 64 x2 y 42 x 22 y 22 53. 1 1 16 12 4 1 x2 y2 1 25 16 x2 y2 y (a) 1 59. (a) 321.84 20.89 14 (b) 1 2 , 1 1 2 ± 5, 35. 41. 45. 47. 51. 55. 57. −21 21 (0, 10) x −14 (25, 0) (−25, 0) (c) Aphelion: 35.29 astronomical units Perihelion: 0.59 astronomical unit x2 y2 (b) 1 625 100 (c) Yes x2 y2 61. (a) 1 0.04 2.56 y (b) A 301.6 311.0 314.2 0 20 0 The shape of an ellipse with a maximum area is a circle. The maximum area is found when a 10 (verified in part c) and therefore b 10, so the equation produces a circle. 71. Geometric 73. Arithmetic 75. 547 77. 340.15 Section 10.4 (page 760) Vocabulary Check (page 760) 1. hyperbola; foci 2. branches 3. transverse axis; center 4. asymptotes 5. Ax 2 Cy 2 Dx Ey F 0 1. b 2. c 3. a 5. Center: 0, 0 Vertices: ± 1, 0 Foci: ± 2, 0 Asymptotes: y ± x 4. d 7. Center: 0, 0 Vertices: 0, ± 5 Foci: 0, ± 106 Asymptotes: y ± 59 x y y 10 8 6 4 2 2 (c) The bottom half x −2 2 −1 x 0.4 0.8 −2 9. Center: 1, 2 Vertices: 3, 2, 1, 2 Foci: 1 ± 5, 2 Asymptotes: y 2 ± 12 x 1 −2 63. 65. y y 4 ( 49 , 7 ) 2 −4 ( − 49 , − 7 x −2 ) 2 −2 4 ( 9 4, − 7 ) ( (− 3 5 5 , 2 −4 −2 − 3 55, − 2 ) (3 5 5 , 2) x 2 ) ( −4 4 3 5 ,− 5 2 ) 285.9 350 1 − 0.8 − 0.4 301.6 a 10, circle (d) 2 (− 49 , 7 ) 311.0 −8 −6 x 6 8 10 −2 −4 −6 − 10 y 3 2 1 x 1 −4 −5 2 3 333200_10a_AN.qxd 12/12/05 11:33 AM Page A191 A191 Answers to Odd-Numbered Exercises and Tests 11. Center: 2, 6 Vertices: 17 19 2, , 2, 3 3 Foci: 2, 6 ± y 2 13 6 x −2 2 4 6 −6 − 10 Asymptotes: 2 y 6 ± x 2 3 13. Center: 2, 3 Vertices: 3, 3, 1, 3 Foci: 2 ± 10, 3 Asymptotes: y 3 ± 3x 2 − 12 − 14 y 2 4 6 −4 −3 −8 −4 Section 10.5 41. 45. 3π 4 − π 4 π 4 −2 6 3 3π 4 (page 769) (page 769) 1. rotation of axes 2. Ax 2 C y 2 Dx Ey F 0 3. invariant under rotation 4. discriminant x 2 −12 12 1. 3, 0 3 2 3 33 1 3. 2 −8 2 π 2 7. 2 5. 2 y x 1 2 2 9. y ± 2 y 4 y′ 10 3 2 2, 22 2 y 2 −8 , x′ y' x' 2 1 x −4 −3 −2 −10 −2 y2 x 23. 1 1 4 12 1 25 2 2 17y 17x x 4 2 y 2 27. 1 1 1024 64 4 12 y 5 2 x 4 2 y 2 4 x 2 2 31. 1 1 16 9 9 9 y 22 x2 x 22 y 22 35. 1 1 4 4 1 1 x 32 y 22 1 9 4 x2 y2 (a) (b) 2.403 feet 1 1 1693 43. 125 1, 0 14.83, 0 3300, 2750 Circle 47. Hyperbola 49. Hyperbola −2 x −1 1 −1 −3 −2 −4 11. x 32 2 y 2 2 1 16 16 y 8 x′ 6 y′ 4 x −4 2 −4 4 6 8 2 CHAPTER 10 39. − Vocabulary Check 8 19. Center: 1, 3 Vertices: 1, 3 ± 2 Foci: 1, 3 ± 25 Asymptotes: y 3 ± 13x 1 37. x 3π 2 x −6 33. π 2 −1 −2 −4 29. 3π 2 −6 Asymptotes: y ± −2 25. 1 x 8 − 2 21. 3 x −6 −4 −2 4 x2 4 3 1 y y2 4 2 2 15. The graph of this 17. Center: 0, 0 equation is two lines Vertices: ± 3, 0 intersecting at 1, 3. Foci: ± 5, 0 −4 51. Parabola 53. Ellipse 55. Parabola 57. Ellipse 59. Circle 61. True. For a hyperbola, c2 a2 b2. The larger the ratio of b to a, the larger the eccentricity of the hyperbola, e ca. 63. Answers will vary. x 32 65. y 1 3 67. xx 4x 4 1 4 69. 2xx 62 71. 22x 34x 2 6x 9 y y 73. 75. 333200_10a_AN.qxd A192 13. 12/9/05 2:42 PM Page A192 Answers to Odd-Numbered Exercises and Tests 37. (a) Hyperbola 6x ± 36x2 20x2 4x 22 (b) y 10 6 (c) y x 2 y 2 3 1 6 2 3 y' x' 2 x −3 2 3 −9 9 −3 −6 1 17. x 12 6 y 6 15. y2 x y y′ y x′ 6 2 −6 39. (a) Parabola 4x 1 ± 4x 12 16x2 5x 3 (b) y 8 2 (c) −2 x′ 4 x −4 7 y′ 2 2 −2 −4 −4 x −4 2 41. 6 1 −6 −15 −9 15 4 3 21. 10 y 6 −2 19. 43. y 4 −4 x x −2 2 4 − 4 −3 −2 −1 6 9 1 3 4 −2 −3 −6 −10 45 23. 25. −6 18 6 −9 27 −6 −4 31.72 33.69 27. e 28. f 29. b 30. a 31. d 32. c 33. (a) Parabola 8x 5 ± 8x 52 416x 2 10x (b) y 2 1 (c) 47. 8, 12 49. 0, 8, 12, 8 2, 2, 2, 4 53. 1, 3 , 1, 3 55. No solution 0, 4 0, 32 , 3, 0 True. The graph of the equation can be classified by finding the discriminant. For a graph to be a hyperbola, the discriminant must be greater than zero. If k ≥ 14, then the discriminant would be less than or equal to zero. 61. Answers will vary. y y 63. 65. 45. 51. 57. 59. 26.57 4 −4 −6 6 4 5 3 4 3 1 2 −4 −3 −2 −1 1 −4 2 1 2 −3 35. (a) Ellipse 6x ± 36x2 2812x2 45 (b) y 14 3 (c) 6 1 5 4 −1 −1 3 −2 2 −3 −4 5 −3 6 y 2 7 −3 − 2 − 1 −1 5 4 −4 69. y 1 −4 3 −3 −2 67. 2 −2 x −6 −5 −4 −3 −2 −1 −1 x 1 t 1 2 3 4 5 71. Area 45.11 square units 73. Area 48.60 square units t 1 2 7 333200_10a_AN.qxd 12/9/05 2:42 PM Page A193 A193 Answers to Odd-Numbered Exercises and Tests Section 10.6 7. (a) (page 776) 9. (a) y Vocabulary Check y (page 776) 1. plane curve; parametric; parameter 2. orientation 3. eliminating the parameter 4 3 2 2 1 1 1. (a) t 0 1 2 3 4 x 0 1 2 3 2 y 3 2 1 0 1 (b) x −2 −1 1 2 3 4 5 −3 −2 −1 6 2 3 −2 −2 (b) y x 2 4x 4 (b) y 11. (a) y x 1 −1 x 1 x 13. (a) y y 4 14 3 −2 −1 4 12 2 10 2 1 8 1 6 x 1 3 −4 4 −1 2 4 x −2 2 (c) y 3 x 2 (b) y 4 15. (a) 4 6 8 10 12 14 −4 x 3 2 2 y2 x2 1 9 9 (b) CHAPTER 10 y 1 −2 2 −2 x −2 −1 17. (a) y y 1 −4 −3 x −1 1 3 4 4 3 3 2 1 −2 1 −3 −4 x −3 −2 −1 The graph of the rectangular equation shows the entire parabola rather than just the right half. The graph of the rectangular equation continues the graph into the second and third quadrants. 3. (a) 5. (a) 2 3 1 3 4 5 7 −2 −3 (b) −3 −4 −4 −5 x 42 y 12 1 4 21. (a) x2 y2 1 16 4 (b) 19. (a) y y 1 x −1 y 6 5 4 y 4 4 3 3 2 1 −7 − 4 −3 − 2 − 1 −2 −3 −4 (b) y 23 x 3 x 1 2 3 −2 x −1 1 −1 (b) y 16x2 2 2 1 1 −2 −1 −1 2 x −1 1 −1 (b) y 2 3 4 x 1 2 3 −2 −3 −4 1 x3 (b) y ln x 4 5 6 333200_10a_AN.qxd A194 12/9/05 2:42 PM Page A194 Answers to Odd-Numbered Exercises and Tests 23. Each curve represents a portion of the line y 2x 1. Domain Orientation (a) , Left to right (b) 1, 1 Depends on (c) 0, Right to left (d) 0, Left to right x h 2 y k 2 25. y y1 mx x1 27. 1 a2 b2 29. x 6t 31. x 3 4 cos y 3t y 2 4 sin 33. x 4 cos 35. x 4 sec y 7 sin y 3 tan 37. (a) x t, y 3t 2 (b) x t 2, y 3t 4 39. (a) x t, y t 2 (b) x t 2, y t 2 4t 4 2 41. (a) x t, y t 1 (b) x t 2, y t 2 4t 5 1 1 43. (a) x t, y (b) x t 2, y t t2 45. 34 47. 6 (d) Maximum height: 136.1 feet Range: 544.5 feet 200 0 600 0 59. (a) x 146.67 cos t y 3 146.67 sin t 16t 2 (b) 50 No 0 450 0 (c) Yes 60 0 500 0 18 0 0 51 −6 0 49. 51. 4 −6 −6 6 6 −4 −4 53. b Domain: 2, 2 Range: 1, 1 57. (a) 100 0 4 55. d Domain: , Range: , Maximum height: 90.7 feet Range: 209.6 feet (d) 19.3 61. Answers will vary. 63. x a b sin y a b cos 65. True xt y t 2 1 ⇒ y x2 1 x 3t y 9t 2 1 ⇒ y x 2 1 67. Parametric equations are useful when graphing two functions simultaneously on the same coordinate system. For example, they are useful when tracking the path of an object so that the position and the time associated with that position can be determined. 69. 5, 2 71. 1, 2, 1 73. 75 75. 3 y 250 y 0 (b) Maximum height: 204.2 feet Range: 471.6 feet 220 105° θ′ x x θ′ 0 500 0 (c) Maximum height: 60.5 feet Range: 242.0 feet 100 0 300 0 − 2π 3
© Copyright 2026 Paperzz