MAC 2312 Integration Problems Mixed Together 1) ex ∫ 1+ ex dx ex ∫ 1+ ex dx = 1 ∫ u du ( ) = ln u + C = ln 1+ e x + C [Absolute value is not needed because 1+ e x > 0 u=1+ex →du=exdx ( ) ex ⎡Note: e 2x = e x 2 ⎤ dx 2) ∫ ⎢⎣ ⎥⎦ 1+ e 2x ex ex dx = ∫ 1+ e2x ∫ 1+ e x ( ) 3) 1 ∫ 1+ e x 2 dx = 1 ∫ 1+ u 2 ( ) du = tan−1 u + C = tan−1 e x + C u=ex →du=exdx dx ⎛ 1 1+ e x − e x ex ⎞ ex x dx = ⋅ dx = 1− dx = 1dx − ∫ 1+ ex ∫ 1+ ex ∫ ⎜⎝ 1+ ex ⎟⎠ ∫ ∫ 1+ ex dx = x − ln 1+↑ e + C = ( ) problem one 4) cos x ∫ 1+ sin x dx cos x Use direct substitution with u = 1 + sin x ∫ 1+ sin x dx = ∫ du u = ln u + C = ln 1+ sin x + C u=1+sinx du=cosxdx 5) ∫ cos x (1+ sin x ) 8 cos x dx Use direct substitution with u = 1 + sin x du ∫ 1+ sin x dx = ∫ u 8 u=1+sinx du=cosxdx = ∫ u−8 du = 1 −7 1 1 u +C= − 7 +C= − −7 7u 7 1+ sin x ( ) 7 +C 6) 1 ∫ 1+ sin x dx 1 1 1− sin x 1− sin x ∫ 1+ sin x dx = ∫ 1+ sin x ⋅ 1− sin x dx = ∫ 1− sin2 x dx = ∫ multiply by 1−sinx 1−sinx ∫ sec 2 xdx − ∫ sec 2 x sin x dx = ∫ sec 2 x dx − 1 1− sin x cos 2 x ∫ (1− sin x ) sec dx = sin x ∫ cos x ⋅ cos x dx = ∫ sec 2 2 x dx = x dx − ∫ sec x tan x dx = tan x − sec x + C Alternate Solution: 1 1− sin2 x 1 dx = ∫ 1+ sin x ∫ 1+ sin x ⋅ 1− sin2 x dx = 2 multiply by 1 ∫ (1+ sin x ) (1− sin x ) 1+ sin x 1−sin x ⋅ 1 1− sin x dx = ∫ dx = 2 cos x cos2 x 1−sin2 x sin x 1 sin x 1 dx = ∫ dx − ∫ ⋅ dx = ∫ sec 2 x dx − ∫ tan x sec x dx = 2 2 cos x cos x x cos x cos x tan x − sec x + C ∫ cos 7) 2 dx − ∫ sin x ∫ 1+ sin x dx 1+ sin x − 1 1+ sin x 1 1 dx = ∫ dx − ∫ dx = ∫ 1dx − ∫ dx = 1+ sin x 1+ sin x 1+ sin x 1+ sin x x − tan x − sec x + C = sec x − tan x + x + C sin x ∫ 1+ sin x dx = ∫ ( 8) ∫x 2 ∫x 2 ↑ problem 6 ) x dx + 8x + 25 x dx = − 8x + 25 1 1 dw 2∫w ∫ (x x 2 w=u2 +9→dw=2udu→ 1dw=udu 2 ) − 8x + 16 + 25 − 16 + 4∫ dx = ∫ x ( x − 4) 2 +9 dx = u+ 4 u 4 du = ∫ 2 du + ∫ 2 du = 2 +9 u +9 u +9 ∫u u=x−4→du=dx ( du 1 u ∫ u2 +a2 = a tan−1a +C 2 1 ⎡ 4 x−4 1 4 x−4 ln x − 4 + 9 ⎤ + tan−1 + C = ln x 2 − 8x + 25 + tan−1 +C ⎢ ⎥ ⎦ 3 2 ⎣ 3 2 3 3 ( ) ) 1 1 1 u 1 4 u du = ln w + 4 ⋅ tan−1 + C = ln u2 + 9 + tan−1 + C = 2 3 3 2 3 3 u +9 2 ( ) 9) ∫x 2 ∫x 2 dx − 8x + 25 dx = − 8x + 25 ∫ (x dx 2 ) − 8x + 16 + 25 − 16 = ∫ ( dx ) 2 x−4 +9 ∫u = du +9 1 u tan−1 3 3 = 2 du u=x−4⇒du=dx 1 +C= u ∫ u2 +a2 = 3 tan−1a +C 1 x−4 tan−1 +C 3 3 10) ∫ ∫ (x (x =− 11) ∫ ∫ x−4 2 − 8x + 25 x−4 2 − 8x + 25 2 dx 2 dx = ) ) 1 1 du 2 ∫ u2 ( = ) ( ) u=x 2 −8x+25→du= 2x−8 dx→ 1du= x−4 dx 2 1 −2 1 1 u du = ⋅ u−1 + C ∫ 2 2 −1 1 1 +C= − +C 2 2u 2 x − 8x + 25 ( 1 (x 2 − 8x + 25 dx ) 2 ) dx ( ( ) = ∫⎡ dx ( ) ⎤ ⎣ x − 8x + 16 + 25 − 16 ⎦ 2 ) ( u=3tanθ→du=3tanθsecθdθ 2 = ∫⎡ dx ( ) ( ) 2 2 = ∫ du = 2 2 ⎤ x − 8x + 25 u +9 x−4 +9 ⎢⎣ ⎥⎦ u=x−4→du=dx 3sec θ tanθ 3sec θ tanθ 3 sec θ tanθ 1 tanθ dθ = ∫ dθ = dθ = dθ = ∫ ∫ 2 2 2 81 sec 2 θ 27 ∫ sec 3 θ ⎡9 tan2 θ + 1 ⎤ 9 tan2 θ + 9 ⎣ ⎦ 2 2 ( ) ) 1 sinθ 1 1 1 1 ⋅ cos3 θdθ = cos2 θsinθdθ = − ⋅ cos3 θ + C = − cos3 θ + C = ∫ ∫ 27 cosθ 27 27 3 81 w=cosθ→−dw=sinθdθ 3 − 1 ⎛ 3 ⎞ 1 ⋅⎜ +C= − ⎟ 2 81 ⎝ u + 9 ⎠ 3 u2 + 9 ( ) 3/2 +C= − 1 ( ) 3 ⎡ x − 4 + 9⎤ ⎢⎣ ⎥⎦ u2+9 θ 3 2 3/2 +C= − u ( 1 3 x − 8x + 25 2 ) 3/2 +C 12) ∫ x sin ( x )dx 2 ∫ x sin ( x )dx = ( ) 1 sinudu 2∫ 2 1 u=x 2 →du=2xdx→ du=xdx 2 13) 1 1 = − cosu + C = − cos x 2 + C 2 2 ∫ x sin2xdx ∫ x sin2x = uv − ∫ v du u=x dv=sin2xdx 1 du=dx v= sin2x dx=− cos 2x 2 1 1 1 1 = − x cos 2x − ∫ − cos 2x dx = − x cos 2x + ∫ cos 2x dx = 2 2 2 2 ∫ 1 1 1 1 1 − x cos 2x + ⋅ sin2x + C = − x cos 2x + sin2x + C 2 2 2 2 4 14) ∫x ∫x 2 2 sin2xdx uv − ∫ v du sin2xdx = u=x 2 du=2xdx dv=sin2xdx 1 v=− cos 2x 2 1 1 1 = − x 2 cos 2x − ∫ − cos 2x ⋅ 2x dx = − x 2 cos 2x + ∫ x cos 2x dx = 2 2 2 1 1 1 1 − x 2 cos 2x + uv − ∫ v du = − x 2 cos 2x + x sin2x − ∫ sin2x dx = 2 2 2 2 u=x dv=cos 2xdx du=dx 1 v= sin2x 2 1 1 1 1 1 1 1 − x 2 cos 2x + x sin2x − ∫ sin2x dx = − x 2 cos 2x + x sin2x − ⋅ − cos 2x + C = 2 2 2 2 2 2 2 1 1 1 − x 2 cos 2x + x sin2x + cos 2x + C 2 2 4 ( 15) x +1 dx 2 +4 ∫x x +1 dx = 2 +4 ∫x ( 1 ln x 2 + 4 2 ∫x ) abs.value is not needed because x 2 +4>0 for all x 16) ) 2 + x 1 dx + ∫ 2 dx = +4 x +4 1 x tan−1 + C 2 2 x +1 dx Use partial fractions 2 −4 ∫x 1 1 1 1 1 x du + ∫ 2 dx = ln u + tan−1 + C = ∫ 2 u 2 2 2 x +4 1 1 1 −1 x u=x 2 +4→ du=xdx dx= ∫ x 2 +a2 a tan a +C 2 x +1 x +1 = 2 x −4 x+2 x−2 ( )( ) ( x +1 A B = + ⇒ x + 1⇒ A x − 2 + B x + 2 x+2 x−2 x+2 x−2 )( ( ) ) ( ) 3 1 x = −2 ⇒ −1= −4A ⇒ A = 4 4 ⎛ 1/ 4 3 / 4 ⎞ x +1 1 1 3 1 1 3 ∫ x 2 − 4 dx = ∫ ⎜⎝ x + 2 + x − 2 ⎟⎠ dx = 4 ∫ x + 2 dx + 4 ∫ x − 2 dx = 4 ln x + 2 + 4 ln x − 2 + C x = 2 ⇒ 3 = 4B ⇒ B = 17) ∫x x +1 dx Use partial fractions-repeated linear factors − 4x + 4 2 ∫x 2 x +1 dx = − 4x + 4 x +1 ( x − 2) 2 x +1 dx = − 4x + 4 A B + x−2 x−2 = 2 ∫x ( ) 2 ( ( 18) ∫x ( ( x +1 x−2 x +1 x x−2 ) ) −2 = ( 7 1 ⇒B = − 4 4 3 x−2 2∫ ( 19) ) −2 x +1 ∫ x (x 2 2 ( ) +1 x +1 ) x x +1 2 2 dx ) ⎛ x +1 1 3 ∫ x 2 − 4x + 4 dx = ∫ ⎜⎜ x − 2 + x − 2 ⎝ ( dx = ln x − 2 + 3 ⋅ A B C + + x x−2 x−2 x = 2 ⇒ 3 = 2C ⇒ C = 2 = −B + ( x − 2) 2 1 x−2 −1 ( ) −1 + C = ln x − 2 − ) ⎞ ⎟ dx = 2 ⎟⎠ 3 +C x−2 dx Use partial fractions-repeated linear factors 2 2 ) x +1 ⇒ x + 1= A x − 2 + B x = 2 ⇒ B = 3 x = 0 ⇒ 1= −2A + B ⇒ 1= −2A + 3 ⇒ −2 = −2A ⇒ A = 1 1 ∫ x − 2 dx + 3 ∫ x − 2 x +1 ∫ ( x − 2) ( x − 2) dx = ∫ dx = 3 2 ) ( ) 2 ( ) x + 1= A x − 2 + Bx x − 2 + Cx 2 1 1 3 x = 1⇒ 2 = A − B + C ⇒ 2 = − B + ⇒ 4 4 2 ⎛ ⎞ x +1 1/ 4 1/ 4 3/2 1 1 1 1 ⎜ dx = − + ∫ x x−2 2 ∫ ⎜ x x − 2 x − 2 2 ⎟⎟ dx = 4 ∫ x dx − 4 ∫ x − 2 dx + ⎝ ⎠ x = 0 ⇒ 1= 4A ⇒ A = ( ) ( 1 1 3 1 ln x − ln x − 2 + ⋅ x−2 4 4 2 −1 ( ) −1 ) 1 1 3 + C = ln x − ln x − 2 − +C 4 4 2 x−2 ( ) dx Use partial fractions-repeated linear and non-repeated quadratic factors = A B Cx + D + 2+ 2 ⇒ x + 1= Ax x 2 + 1 + B x 2 + 1 + Cx + D x 2 + 1 x x x +1 ( ) ( We will find A,B, C, and D by equating coefficients. ) ( )( ) ( ) ( ) ( )( ) If x + 1= Ax x 2 + 1 + B x 2 + 1 + Cx + D x 2 + 1 , then coefficients of the x 3 ,x 2 ,x and constant terms on both sides must be equal. Since no x 3 or x 2 appear on the left side, their coefficients on the left side are zero. ( ) ( ) ( ) x + 1= Ax x 2 + 1 + B x 2 + 1 + Cx + D x 2 ⇒ x + 1= Ax 3 + Ax + Bx 2 + B + Cx 3 + Cx + Dx 2 ⇒ ( ) ( ) x + 1= A + C x 3 + B + D x 2 + Ax + B Since the coefficients of both the x 3 and x 2 terms on the left side are zero, we have A + C = 0 ⇒ C = −A and B + D = 0 ⇒ D = −B . This leaves x + 1= Ax + B ⇒ A = 1,B = 1,C = −1, and D = −1⇒ ∫ 1 ∫ x dx + ∫ x −2 dx − ∫ ⎛ 1 1 −x − 1⎞ dx = ∫ ⎜⎝ x + x 2 + x 2 + 1 ⎟⎠ dx = x2 x2 + 1 x +1 ( ( ) ) x 1 1 dx − ∫ 2 dx = ln x − x −1 − ln x 2 + 1 − tan−1 x + C = 2 x +1 x +1 2 1 u=x +1→ du=xdx 2 2 ln x − 20) ( ) 1 1 − ln x 2 + 1 − tan−1 x + C x 2 x3 ∫ 4 + x 2 dx ( ) 3 2tanθ x3 8 tan3 θ 16 tan3 θsec 2 θ 2 2 dx = ⋅ 2sec θdθ = ⋅ 2sec θdθ = ∫ 4 + x2 ∫ 4 + 2tanθ 2 ∫ 4 + 4 tan2 θ ∫ 4 1+ tan2 θ dθ = ( ( ) 2 ) x=2tanθ→dx=2sec θdθ 4∫ tan θsec θ dθ = 4 ∫ tan3θdθ = 4 ∫ tan2 θ tanθdθ = 4 ∫ sec 2 θ − 1 tanθ = sec 2 θ 3 ( 2 4 ∫ sec θ tanθdθ − 4 ∫ tanθdθ = 2 tan2 θ 4⋅ 2 2 u=tanθ→du=sec θdθ 2 ( ) ( ) 2 ⎛ x⎞ − 4ln sec θ + C = 2 ⎜ ⎟ − 4ln ⎝ 2⎠ ) x 1 x2 2 − 4 ⋅ ln x + 4 + 4ln2 + C1 = − 2ln x 2 + 4 + C, where C = C1 − 4ln2 2 2 2 x2+4 θ 2 x x2 + 4 +C= 2 x x3 as x 2 ⋅ and use the direct substitution 2 4 + x2 4+x 1 x3 1 u− 4 1 ⎛ 4⎞ u = 4 + x 2 . Then du = xdx and x 2 = u − 4 ⇒ ∫ dx = ∫ du = ∫ ⎜ 1− ⎟ du 2 2 2 u 2 ⎝ u⎠ 4+x Alternate solution: Write ∫ 21) ∫ 8∫ x3 4 + x2 x3 4 + x2 dx ( 2tanθ) 3 dx = ∫ 4 + 4 tan2 θ ⋅ 2sec 2 θdθ = 2 x=2tanθ→dx=2sec θdθ ∫ 8 tan3 θ ( 4 1+ tan2 θ ) ⋅ 2sec 2 θdθ = 16 tan3 θsec 2 θ ∫ 4sec 2 θ dθ = tan3 θsec 2 θ dθ = 8 ∫ tan3 θsec θdθ = 8 ∫ tan2 θsec θ tanθdθ = 8 ∫ sec 2 θ − 1 sec θ tanθdθ = sec θ ( ) 3 ⎛ x2 + 4 ⎞ u3 8 8 ⎛ x2 + 4 ⎞ 8∫ u2 − 1 du = 8 ⋅ − 8u + C = sec 3 θ − 8sec θ + C = ⋅ ⎜ ⎟ − 8⎜ ⎟ +C= 3 3 3 ⎝ 2 ⎠ 2 ⎠ ⎝ u=sec θ→du=sec θ tanθdθ ( ( ) ) 2 2 ⎛ x2 + 4 ⎞ 1 2 8 x +4 x +4 ⋅ − 4 x2 + 4 + C = x2 + 4 ⋅ ⎜ − 4⎟ = x + 4 x2 − 8 + C 3 ⎝ 3 ⎠ 3 8 ( x2+4 ) x θ 2 x x3 Alternate Solution: As in the previous problem, Write as x 2 ⋅ and use the direct substitution 2 4 + x2 4+x 1 x3 1 u− 4 1 ⎛ 4 ⎞ u = 4 + x 2 . Then du = xdx and x 2 = u − 4 ⇒ ∫ dx = ∫ du = ∫ ⎜ u − ⎟ du = 2 2 2 ⎝ u u⎠ 4 + x2 1 u1/2 − 4u−1/2 du ∫ 2 ( ) 22) x3 ∫ x −1 2 x3 ∫ x2 − 1 ∫ sec 4 dx dx = sec 3 θ ∫ sec 2 θ − 1 ⋅ sec θ tanθdθ = ∫ sec 3 θ tan2 θ x=sec θ→dx=sec θ tanθdθ θdθ = ∫ sec 2θsec 2 θdθ = tan θ tanθ + + C = x2 − 1 + 3 2 3 ∫ (1+ tan θ) sec 2 ( ) +C= =tanθ→du=sec θdθ sec 3 θ ∫ tanθ sec θ tanθdθ = θdθ = ∫ sec 2 θdθ + ∫ tan2 θsec 2 θdθ = 3 x2 − 1 3 2 ⋅ sec θ tanθdθ = ( x − 1) −1+ 3/2 2 x2 3 +C x x2-1 θ 1 Or, use a solution similar to problems 20 and 21. x3 dx 23) ∫ 2 x −1 x3 sec 3 θ sec 3 θ sec 3 θ dx = ⋅ sec θ tanθdθ = ⋅ sec θ tanθdθ = ∫ x 2 − 1 ∫ sec 2 θ − 1 ∫ tan2 θ ∫ tanθ sec θdθ = x=sec θ→dx=sec θ tanθdθ sec θ sec θ 2 ∫ tanθ dθ = ∫ tanθ ⋅ sec θdθ = 4 2 (1+ tan θ) sec 2 ∫ 2 tanθ θdθ = 1+ u2 1 ∫ u du = ∫ u du + ∫ udu = 2 u=tanθ→du=sec θdθ u tan θ x −1 1 x2 + C = ln tanθ + + C = ln x 2 − 1 + + C1 = ln x 2 − 1 + + C, where 2 2 2 2 2 1 C = C1 − 2 Use the same triangle as in #22. Also, the problem can be solved as in #20 and 21 with u-substitution. ln u + 2 2 2 ( ) 24) 1 ∫ 3 − 5x 2 dx 1 ∫ 3 − 5x 1 2 dx = 3 cosθ ∫ 5 3 cosθ 1 ∫ 3− dθ = ( 5x ) 1 2 ∫ 1dθ = 5 dx = 1 1 ∫ 5 3−u u= 5x→ 1 5 1 5 du = 1 ∫ 5 5 3 cosθ 3 − 3sin θ 2 dθ = 1 ∫ 5 ( sin−1 u 3 +C= 1 5 sin−1 5x 3 +C= 3 cosθ 3 1− sin2 θ u= 3 sinθ→du= 3 cosθdθ dx 1 θ+C = 2 1 5 sin−1 ) 15x +C 3 3 u θ 3-u2 25) ∫ (csc ) x − 2csc 2 x cot 2 x + cot 4 x dx 4 ∫ (csc x − 2csc x cot ∫ 1 dx = ∫ 1dx = x + C 4 2 2 ) x + cot 4 x dx = ∫ (csc 2 ) 2 x − cot 2 x dx = ∫ (1+ cot 2 ) 2 x − cot 2 x dx = 2 π/2 26) ∫ csc 3 x cot x π/6 π/2 ∫ csc π/2 3 x cot x = π/6 ∫ csc π/6 1 2 x csc x cot x dx = − ∫ u du 2 ∫ x ln ( x + 2) dx u3 8 1 7 = ∫ u du = = − = 3 1 3 3 3 1 2 2 b u=csc x→du=csc x cot xdx→−du=csc x cot x a − f t dt = f t dt x=π/6→u=csc π/6 →u=2 x=π/2→u=csc π/2 →u=1 b a ( ) ( ) 27) 2 2 ∫ () ∫ () dθ = ( ) x2 ∫ x ln x + 2 dx = uv − ∫ v du = ( ) u=ln x+2 du= = x2 2 ( ) ln x + 2 − 1 2 1 x+2 2 dv=xdx dx v= x ∫x 2 ) x2 1 ⋅ 2 x+2 dx = x2 2 ( ) ln x + 2 − 1 x2 2∫x+2 dx = x2 2 ( ) ln x + 2 − 1 ⎛ 4 ⎞ x −2+ dx 2 ∫ ⎜⎝ x + 2 ⎟⎠ ↑ long division 2 2 ∫ x dx + ∫ 1dx − 2 ∫ 1 x+2 dx = x2 2 ( ) ln x + 2 − 1 x2 ⋅ + x − 2ln x + 2 + C 2 2 ( )( ) x+2 x−2 x2 x2 − 4 + 4 x2 − 4 4 4 4 = = + = + = x − 2+ x+2 x+2 x+2 x+2 x+2 x+2 x+2 Alternate to long division: 28) ( ln x + 2 − ∫ sin3xdx 1 du = 2xdx and v = ∫ sin3x dx = − cos3x + C ⇒ ∫ x 2 sin3x dx = uv − ∫ v du = 3 1 1 1 2 − x 2 cos3x − ∫ − cos3x ⋅ 2xdx = − x 2 cos3x + uv − ∫ v du = 3 3 3 3 ( ) u=x dv=cos3x 1 du=dx v= sin3x 3 ⎞ 2 1 1 2⎛ 1 1 2 2 − x 2 cos3x + ⎜ x sin3x ⎟ − ∫ sin3x + C = − x 2 cos3x + x sin3x − ∫ sin3x dx = 3 3⎝3 3 9 9 ⎠ 3 3 ⎞ 1 2 2⎛ 1 1 2 2 − x 2 cos3x + x sin3x − ⎜ − cos3x ⎟ + C = − x 2 cos3x + x sin3x + cos3x + C 3 9 9⎝ 3 3 9 27 ⎠ 29) ∫ sec x tan xdx ∫ sec x tan xdx = ∫ sec 3 5 3 = 5 ( ) 2 ( ( 2 ) 2 2 2 4 2 ∫ u u − 1 du = ∫ u u − 2u + 1 du = u=sec x→du=sec x tan xdx ) ( 2 ∫( ) u 6 − 2u 4 + u 2 du = = u 7 2u 5 u 3 − + +C = 7 5 3 sec 7 x sec 5 x sec 3 x − + +C 7 5 3 30) ∫ sin 2 ∫ sin t cos2 t dt 2 t cos2 t dt = ∫ 2 (1− cos 2t ) 2 (1+ cos 2t ) dt = 4 ∫ (1− cos 2t ) dt = 4 ∫ sin 1 1 1 2 1 2 2t dt = 1 1 1 1 1 1 1 1 1− cos 4t dt = ∫ 1− cos 4t dt = ∫ 1dt − ∫ cos 4t dt = t − ⋅ sin4t + C = ∫ 4 2 8 8 8 8 8 4 ( ) 1 sin2 x= 1−cos 2x with x=2t 2 ( ) 1 1 t− sin4t + C 8 32 ) 2 x tan4 x sec x tan x dx = ∫ sec 2 x tan2 x dx = ∫ sec 2 x sec 2 x − 1 sec x tan x ( ) 1/2 ∫ tan ( 2x ) dx Use Integration by parts with u = tan−1 2x and dx = dx −1 31) 0 u = tan−1 2x ⇒ du = 1 ( ) 1+ 2x 2 ( ) ⋅ 2x ′ dx = 2 1/2 1/2 1+ 4x dx and dv = dx ⇒ v = x ⇒ uv 0 − 2 ∫ udv = 0 CHAIN RULE x tan 1 2 32) ∫ −1 ( 2x ) ∫ () 9 − x2 x3 9 − x2 27 ∫ cos θ ( ∫ 1+ 4x = x tan 2 −1 ( 2x ) 0 1/2 0 1 2 8∫w − ( 2x ) 1/2 0 1 2 w=1+4 x → dw=dx 8 x=0→w=1 x=1/2→w=2 () − 1 4 2 = ln w 1 () ∫ 27 sin3 θ ⋅ 3 cos θdθ = 27 ⋅ 3 ∫ 9 − 9 sin2 θ sin3 θ cos θ ( 9 1− sin2 θ ) dθ = ( 27 ⋅ 3 sin3 θ cos θ ∫ 3 cos 2 θ ) dθ = 27 ∫ sin3 θ dθ = 27 ∫ sin2θ sinθdθ = 27 ∫ 1− cos 2 θ sinθ dθ = )( −du) u=cos θ→du=− sin θdθ=− du=sin θdθ ( ) = 27 ∫ u − 1 du = 27 ⋅ 2 ( u3 3 − 27u + C = 9u3 − 27u + C = ) 9 cos θ − 27 cos θ + C = 9 cos θ cos θ − 3 + C = 9 ⋅ 3 ⎛ 9 − x 2 − 27 ⎞ 3 9−x ⎜ ⎟⎠ + C = 9 ⎝ 2 = x tan du −1 ⎛1 1 ⎞ 1 π 1 π 1 tan−1 0 − ⎜ ln 2 − ln1⎟ = ⋅ − ln 2 = − ln 2 ⎡⎣ tan−1 0 = 0 and ln1 = 0 ⎤⎦ ⎝4 2 4 ⎠ 2 4 4 8 4 1 sin3 θ cos θ 27 ∫ 1− u 2x dx dx = 2 − 0 tan−1 1 − x3 1/2 1/2 2 9 − x2 3 ( ⋅ −18 − x 2 9 − x2 ⎛ 9 − x2 3 )+C = − ⎜⎝ 9 ( ⎞ − 3⎟ + C = ⎠ 9 − x 2 x 2 + 18 3 )+C dθ = 3 x θ 9-x2 33) ∫t dt [HINT: Use completing the square] − 6t + 13 2 tdt ∫ t − 6t + 13 2 u ∫ u +4 2 1 w 2∫ −1/2 ∫ = u2 + 4 + ln 2 u +4 2 ( ) 1 2∫ w = tdt ∫ ( t − 3) +∫ dw 1 2 w=u +4→dw=2udu→ dw=du 2 2 sec θ 2 dθ = 1 ⋅ 1 2 1/ 2 w1/2 + 2 +4 u+3 =∫ ( ) 2 + 4 ⎤ + ln 2 + C = ⎦ du = u2 + 4 u=t−3→t=u+3→du=dt 3 4 tan2 θ + 4 ⋅ sec θ tan θdθ = u=2 tan θ→du=2 tan θ sec θ 3 tanθ dθ = 2∫ u2 + 4 + 3 2 + C = u2 + 4 + ln 2 − ln u2 + 4 = u2 + 4 + ln 2 − u +4 2 1 t − 3 + 4 − ln ⎡ t − 3 2 ⎣ C1 = C + ln 2 2 1 du = sec θ tanθ 4 ) − 6t + 9 + 13 − 9 3 du + ∫ dw + 3 ∫ (t tdt t 2 − 6t + 13 − 1 2 ( ln sec θ + C = 1 2 ( ) ln u2 + 4 + C = ) ln t 2 − 6t + 13 + C1, where 4+u2 u θ 2 34) ∫ ( ( x 2 + x + 16 )( x +1 x − 3 ) x 2 + x − 16 )( x +1 x − 3 ) = 2 Use the method of partial fractions-repeated linear factors. 2 A x +1 + B x−3 ( x = −1⇒ 1− 1− 16 = A −1− 3 + ) 2 C ( x−3 ) 2 ( ⇒ x 2 + x − 16 = A x − 3 ) 2 ( )( ) ( ) +B x − 3 x +1 + C x +1 ⇒ ⇒ −16 = 16A ⇒ A = −1 x = 3 ⇒ 9 + 3 − 16 = 2C ⇒ −4 = 2C ⇒ C = −2 To find B, set x = 0 along with the values of A and C. ( ) −16 = A −3 ∫ 2 ( )( ) () + B −3 1 + C 1 ⇒ −16 = −9 − 3B − 1⇒ −16 = −10 − 3B ⇒ −6 = 3B ⇒ B = −2 x 2 + x − 16 ( x + 1) ( x − 3) 2 = −1 2 ∫ x + 1 dx + ∫ x − 3 dx + ∫ 1 − ln x + 1 + 2ln x − 3 − x−3 −1 ( 35) ∫x 3 3 − x 2 dx ) −1 −1 ( x − 3) 2 dx = − ∫ 1 x +1 dx + 2 ∫ 1 x−3 ( ) 2 dx − ∫ x − 3 dx = ( ) 2 x−3 1 1 + C = − ln x + 1 + 2ln x − 3 + + C = ln + +C x−3 x +1 x−3 3 2 ∫ x 3 − x dx = ∫( 3 sinθ ∫ 3 ∫ (1− cos θ ) ( ) cos ) 3 ( ) 3 − 3 sin2 θ ⋅ 3 cos θdθ = ∫ 3 3 ⋅ sin3 θ 3 1− sin2 θ ⋅ 3 cos θdθ = ∫ − ∫ 9 3 (1− u ) u ∫ 3 3 3sin3 θ cos2 θ cosθdθ = 9 3 sin3 θcos2θ = 9 3 sin2 θcos2 θsinθdθ = 9 2 2 θsinθ = 2 2 ( ) ( ) du = 9 3 ∫ u2 − 1 u2du = 9 3 ∫ u4 − u2 du = u=cosθ→du=− sinθdθ→−du=sinθdθ u5 u3 9 3 3 3 cos3 θ −9 3⋅ +C= cos5 θ − 3 3 cos3 θ + C = 3cos2 θ − 5 + C = 5 3 5 5 3/2 3 2 ⎡ ⎤ ⎡ 3 3 − x2 ⎤ 3 − x2 3 3 ⎛ 3 − x2 ⎞ ⎢ ⎛ 3 − x2 ⎞ 3 3 ⎥ ⎢ ⎥+C= ⋅⎜ 3 − 5 + C = ⋅ − 5 ⎟ ⎜ ⎟ ⎥ 5 ⎝ 5 ⎢ ⎥ 3 3 ⎠ ⎢⎢ ⎝ 3 ⎠ 3 3 ⎣ ⎦ ⎥⎦ ⎣ ( 9 3⋅ ( (3 − x ) ⋅ (3 − x 5 2 3/2 (3 − x ) ( −x − 5) + C = 2 2 3/2 5 2 −2 ) ( ) ) + C = − 1 (3 − x ) ( x 5 2 ) 3/2 2 ) +2 +C 3 x θ 3-x2 36) x3 − 8 ∫ x + 2 dx The integrand is an improper rational function. Therefore, begin by performing long-division on the integrand. x 2 − 2x + 4 x + 2 x 3 + 0x 2 + 0x − 8 ( − x 3 + 2x 2 ) _____________ ( − 2x 2 − −2x 2 − 4x ) −8 _____________ 4x − 8 4x + 8 _____________ − 16 ⎛ 2 x3 − 8 16 ⎞ x3 dx = x − 2x + 4 − dx = − x 2 + 4x − 16ln x + 2 + C ∫ x+2 ∫ ⎜⎝ x + 2 ⎟⎠ 3 )( ( ) x + 2 x 2 − 2x + 4 x 3 − 8 x 3 + 8 − 16 x 3 + 8 16 16 16 = = − = − = x 2 − 2x + 4 − NOTE: x+2 x+2 x+2 x+2 x+2 x+2 x+2 ( ) a3 +b3 = a+b ⎛⎜⎝ a2 −ab+b2 ⎞⎟⎠ 37) ∫ (x (x 20 2 )( 20 2 dx Use partial fractions-non-repeated linear and quadratic factors ) + 4 x −1 )( ) + 4 x −1 = Ax + B C + ⇒ 20 = Ax + B x − 1 + C x 2 + 4 . To find A, B, and C, first set x = 1 in the 2 x + 4 x −1 ( )( ) ( ) last equation. ( )( ) ( ) x = 1: 20 = Ax + B x − 1 + C x 2 + 4 ⇒ 20 = 5C ⇒ C = 4 . Setting x = 0 and C = 4 allows for finding B. ( )( ) ( ) x = 0 : 20 = B −1 + 4 4 ⇒ 20 = −B + 16 ⇒ B = −4 . Now try x = -1 with B = -4 and C = 4 to find A. ( )( ) ( ) x = −1: 20 = −A − 4 −2 + 4 5 ⇒ 20 = 2A + 8 + 20 ⇒ 2A = −8 ⇒ A = −4 ∫ (x ⎛ −4x − 4 4 ⎞ 2x 4 4 dx = ∫ ⎜ 2 + dx = −2 ∫ 2 dx − ∫ 2 dx + ∫ dx = ⎟ x −1 ⎝ x + 4 x − 1⎠ x +4 x +4 + 4 x −1 20 2 ( )( ) ) −2ln x 2 + 4 − u=x 2 +4→du=2xdx 1 1 x ⋅ tan−1 + 4ln x − 1 + C 4 2 2 u=x−1→du=dx 1 x tan−1 +C a a π/4 38) ∫ sin 5 2x cos3 2x 0 π/4 ∫ π/4 ∫ sin5 2x cos3 2xdx = 0 0 1 ( ) 1 u=sin2x→ du=cos 2xdx 2 π π x=0→u=sin0=0 x= →u=sin =1 4 2 ∫e −2x ∫ sin 5 ( ) 2x 1− sin2 2x cos 2xdx = 0 1 1 1 1 ⎛ u6 u8 ⎞ 1 ⎛ 1 1⎞ 1 1 1 5 7 = ∫ u − u du = ⎜ − ⎟ = ⎜ − ⎟ = ⋅ = 20 2⎝ 6 8 ⎠ 2 ⎝ 6 8 ⎠ 2 24 48 0 ( 1 5 u 1− u2 du ∫ 20 39) π/4 sin5 2x cos2 2x cos 2xdx = ) sin5x dx dv = e −2x dx u = sin5x 1 v = ∫ e −2x dx = − e −2x 2 du = 5cos5xdx 1 5 1 5 sin5x dx = uv − ∫ v du = − e −2 x sin5x − ∫ − e −2 x cos 5x dx = − e −2 x sin5x + e −2x cos5x dx = 2 2 2 2 ⎤ 1 5⎡ 1 5⎡ 1 5 −2x − e −2 x sin5x + uv − v du ⎤⎦ = − e −2 x sin5x + ⎢ − e −2x cos5x − e sin5x dx ⎥ ⇒ ⎣ 2 2 2 2⎣ 2 2 ⎦ −2 x ∫e ∫ −2 x ∫ u=cos5x ∫ dv=e dx 1 du=−5sin5xdx v=− e−2 x 2 1 5 25 −2 x sin5x dx = − e −2 x sin5x − e −2 x cos 5x − e sin5x dx ⇒ 2 4 4 ∫ 25 −2 x 1 −2 x 5 −2 x −2 x ∫ e sin5x dx + 4 ∫ e sin5x dx = − 2 e sin5x − 4 e cos 5x + C ⇒ 29 −2 x 1 5 e sin5x dx = − e −2 x sin5x − e −2 x cos 5x + C ⇒ ∫ 4 2 4 ∫e −2 x ∫e −2 x 2 40) sin5x dx = 1 ∫ 4x − x 2 1 ⎤ 4 ⎡ 1 −2x 5 4 − e sin5x − e −2x cos5x ⎥ + C1, where C1 = C ⎢ 29 ⎣ 2 4 29 ⎦ dx First, use completing the square on the integrand. ( ) ( 4x − x = − x − 4x + 4 + 4 = 4 − x − 2 2 2 2 ) ∫ 2 1 0 ∫ − π/6 2 cos θ ( 0 4 1− sin θ 2 ) dθ = ∫ − π/6 2 cos θ 4 cos θ 2 0 dθ = ∫ − π/6 2 1 4x − x 2 cos θ 2 cos θ 2 dx = 1 0 dθ = ∫ ( 4− x−2 ∫ 1dθ = θ − π/6 0 1 0 − π/6 ) 2 dx = ∫ −1 0 1 4−u 2 du = u= x −2→du=dx x =1→u=−1 x =0→x =−2 ⎛ π⎞ π = 0−⎜− ⎟ = ⎝ 6⎠ 6 ∫ − π/6 1 4 − 4 sin θ 2 u=2 sin θ→du=2 cos θdθ 1 π u=−1→− =sin θ→θ=− 2 6 u=0→0=sin θ→θ=0 ⋅ 2 cos θdθ = 41) ∫x ∫ dx 2 dx x 2 Use the direct substitution u= 4x, allowing for the trig substitution u = 3sec θ 16x 2 − 9 = 16x − 9 2 ∫ 1 x ( 4x ) 2 dx = 2 −9 1 ∫ 4 u du =4 2 ∫ u −9 2 16 du u 2 =4 u −9 2 ∫ 3 sec θ tan θ dθ = 9 sec θ 9 sec θ − 9 2 2 u= 3 sec θ→du= 3 sec θ tan θdθ 1 u= 4 x→ du= dx 4 u 4 3 sec θ tan θ 4 ∫ 9 4 9 ∫ ( ) sec θ 9 sec θ − 1 2 cos θ dθ = 2 4 9 dθ = sin θ + C = 4 9 = x→ u 2 3 sec θ tan θ 4 ∫ 9 sec θ ⋅ 9 tan θ 2 u −9 2 2 ⋅ 2 =x 16 u +C= 4 9 dθ = 4 3 sec θ tan θ ∫ 9 sec 16x − 9 2 θ ⋅ 3 tan θ 2 ⋅ 4x dθ = 16x − 9 4 1 dθ = ∫ 9 sec θ 2 +C= 9x u +C u2-9 θ 3 42) ∫ cos (ln x ) dx ∫ cos (ln x ) dx = ( ) Begin with integration by parts with u = cos ln x ∫ uv − v du ( ) sin( ln x ) d du=− sin( ln x ) [ ln x ]=− u=cos ln x dx ⇑ CHAIN RULE! ( ) x cos ln x + ∫ ( ) cos( ln x ) d du=cos( ln x ) [ ln x ]= dx We now have ( ) x dv =dx ( ) x dx =x cos (ln x ) + sin ln x x ( ) ∫ = x cos ln x + x sin ln x − dv =dx C1 2 x v=x ( ) ∫ ( ) 2 cos ln x dx = x cos ln x + x sin ln x + C1 ⇒ cos ln x dx = where C = ( ) x dx =x cos (ln x ) + x sin (ln x ) − cos ln x ∫ cos (ln x ) dx = x cos (ln x ) + x sin (ln x ) − ∫ cos (ln x ) dx ⇒ ( ) ∫ sin (ln x ) dx = v=x ( ) uv − v du u=sin ln x ∫ x ( ) ∫ = x cos ln x − − ( ) ( ) + C, x cos ln x + x sin ln x 2 ∫ cos (ln x ) dx
© Copyright 2026 Paperzz