Module n° : 608 Title : Chimerism and DNA fingerprinting Lecturer : Friedel Nollet Molecular Biology and Cytometry Course, May 5-6 2011, Mol Hematopoïetische stamceltransplantatie myeloablative SCT graft falen/rejectie conditionering & stamcel engraftment herval donor stamcellen (graft) patiënt graft versus stroma rejectie patiënt na SCT prognostic significance of chimerism testing Koldehoff et al., Am J. Hemato (2006) 81:735-746 Microsatelliet Types of STR Repeat Units • Dinucleotide (CA)(CA)(CA)(CA) • Trinucleotide (GCC)(GCC)(GCC) • Tetranucleotide (AATG)(AATG)(AATG) • Pentanucleotide (AGAAA)(AGAAA) • Hexanucleotide (AGTACA)(AGTACA) DNA fingerprinting persoon X persoon Y Chimerisme test patient donor sample (29.1% donor) why chimerisme testing? • to follow engraftment : aplasia after transplantation can be caused by • graft failure (<5% donor) • versus graft-versus-stroma effect (~100% donor chimerism) • conditioning for second transplant • to monitor immunotherapy (donor lymphocyte infusions) for the treatment of relapse • detection of relapse (!not a sensitive technique) • confirm monozygosity of twins (syngeneic transplant) Non-myeloablative SCT Non-myeloablative transplant protocol Childs et al. 1999, Blood 94 (9), 3234-3241 Methods of chimerism testing • FISH for sex-mismatched transplantations • RBC antigens • Enzyme polymorphisms • DNA polymorphic markers - HLA antigens - RFLP (Restriction Fragment Length Polymorphism) - VNTR (Variable Number of Tandem Repeats) - Minisatellites (> 6 nt) - Microsatellites (STR, short tandem repeats, 2-5 nt) nucleus aatttttgta tcaccatgtt tattttaagg gatagaacac ctaacgATAG ATAGATAGAT TGATAGtttt ctatagtaaa gtgcaattct aatcgttata ttttttttag ggtcaggctg ttaatatata ttgtcatagt ATAGATAGAT AGATAGATAG tttttatctc catttaatta gtcaatgagg attcttaaga agacggggtt actatggagt taaagggtat ttagaacgaa AGATAGATAG ATAGACAGAT actaaatagt ccaatatttg ataaatgtgg atatatattc CEL NNNNNNN-(ATAG)n-NNNNNN HISTONEN DNA chromosoom donor patiënt donor patiënt Procedure PB or BM (1) if necessary, T-cell isolation (2) DNA-extraction from PB / BM (T-cells) (3) PCR-amplification of markers (AmpFlSTR or Powerplex16) (4) Electrophoresis and detection (ABI PRISM 3130) (5) Interpretation Changes made to the protocol 1. Amount of DNA template was increased : from 1-2.5 ng DNA to 25 ng DNA (corresponds to ~3000 cells) 2. Number of PCR cycles was decreased : from 10+22 to 10+18 10+22 cycles 10+20 cycles 10+18 cycles 10+16 cycles Interpretation of results • analysis of donor and recipient before transplantation to determine donor and recipient alleles • donor donor patiënt patiënt A1 A2 % donor = A3 A4 (oppervlaktes onder piek) A2+A4 A1+A2+A3+A4 From : Nollet F, Billiet J, Selleslag D, Criel A. Bone Marrow Transplant. 2001 Sep;28(5):511-8. Standardisation of multiplex fluorescent short tandem repeat analysis for chimerism testing. Stutter peaks D slippage of TAQ polymerase => minor product peak at n-4 R (for tetranucleotide repeats) SAMPLE exclusion for stutter interference D Peak Area R < D : exclude R > D : include R stutter is always < 13% mean ~7% SAMPLE RD name patient precision and accuracy intralaboratory TYPE-I TYPE-II precision and accuracy intralaboratory (2) Accuracy observed percent chimerism for each mock sample differs < 1,7% (TYPE-I) < 2,7% (TYPE-II) from the prepared mixing ratio Precision standard deviation for marker used to determine percent chimerism < 2,1% (TYPE-I) < 4,2% (TYPE-II) precision and accuracy interlaboratory (2) Average absolute deviation: Range: 0.60% 0.86% 49.1-50.2% 38.8-40.2% 0.72% 8.6-11.4% Other Human Identification systems TYPE-I markers EQC chimerism testing Centers for Molecular Diagnostics, Belgium Detection limit of chimerism analysis Detection limit Imprecision increases at low/high chimerism values. 5% < TYPE-I markers < 95% Definitions: Full Chimerism (FC) : >95% donor cells Mixed Chimerism (MC) : 5% <-> 95% donor cells We were able to detect even <1% populations (dependent upon marker). However, there is a persistent recipient T-cell compartment after transplantation (especially of graft was T-cell depleted). Advantages for STR Markers • Small product sizes are generally compatible with degraded DNA and PCR enables recovery of information from small amounts of material • Multiplex amplification with fluorescence detection enables high power of discrimination in a single test • Commercially available in an easy to use kit format Real-Time PCR Chimerism Performance Targets • Sensitivity – Detection of 0.05% of minor component in a mixed DNA sample when starting with 250 ng of DNA – Sensitivity is limited only by the amount of input DNA in the reaction • Need enough copies of the minor component to avoid stochastic sampling error • Ability to detect a 2-fold change real time PCR primers and probes to detect indels Koldehoff et al., Am J. Hemato (2006) 81:735-746 Real-time PCR vs STR PCR Alizadeh Blood Blood. 2002 Jun 15;99(12):4618-25. Article 33bis EQC UKNEQAS • nov 2011 : 68 participants number of markers used for calculation
© Copyright 2026 Paperzz