Exercise1.2 Q1.Expresseachnumberasproductofitsprimefactors: i. 140 ii. 156 iii. 3825 iv. 5005 v. 7429 Ans. I. 140=2x2x5x7 II. 156=2x2x3x13 III. 3825=3x3x5x5x17 IV. 5005=5x7x11x13 V. 7429=17x19x23 Q2. FindtheLCMandHCFofthefollowingpairsofintegersandverifythat LCM×HCF=productofthetwonumbers. I. 26and91 II. 510and92 III. 336and54 Ans. I. 26and91 26=2x13 91=7x13 HCF=13 LCM=2x7x13=182 Productofthetwonumbers=26x91=2366 HCFxLCM=13x182=2366 Hence,productoftwonumbers=HCFxLCM II. 510and92 510=23x5x17 92=2x2x23 HCF=2 LCM=2x2x3x5x17x23=23460 Productofthetwonumbers=510x92=46920 HCFxLCM=2x23460 =46920 Hence,productoftwonumbers=HCFxLCM III. 336and54 336=2x2x2x23x7 54=2x3x3x3 LCM=24x33x7=3024 Productoftwonumbers=336x54=18144 HCFxLCM=6x3024=18144 Hence,productoftwonumbers=HCFxLCM Q3.FindtheLCMandHCFofthefollowingintegersbyapplyingtheprime factorisationmethod i. 12,15and21 ii. 17,23and29 iii. 8,9and25 Ans. Q4. GiventhatHCF(306,657)=9,findLCM(306,657). Ans. Q.5 Checkwhether6ncanendwiththedigit0foranynaturalnumbern. Ans. Ifanynumberendswiththedigit0,itshouldbedivisibleby10orinother words,itwillalsobedivisibleby2and5as10=2×5 Primefactorisationof6n=(2×3)n Itcanbeobservedthat5isnotintheprimefactorisationof6n. Hence,foranyvalueofn,6nwillnotbedivisibleby5. Therefore,6ncannotendwiththedigit0foranynaturalnumbern. Q6. Explainwhy7×11×13+13and7×6×5×4×3×2×1+5are compositenumbers. Ans. Numbersareoftwotypes-primeandcomposite.Primenumberscanbe dividedby1andonlyitself,whereascompositenumbershavefactors otherthan1anditself. Itcanbeobservedthat 7×11×13+13=13×(7×11+1)=13×(77+1) =13×78 =13×13×6 Thegivenexpressionhas6and13asitsfactors.Therefore,itisa compositenumber. 7×6×5×4×3×2×1+5=5×(7×6×4×3×2×1+1) =5×(1008+1) =5×1009 1009cannotbefactorisedfurther.Therefore,thegivenexpressionhas5 and1009asitsfactors.Hence,itisacompositenumber. Q7. Thereisacircularpatharoundasportsfield.Soniatakes18minutesto driveoneroundofthefield,whileRavitakes12minutesforthesame. Supposetheybothstartatthesamepointandatthesametime,andgoin thesamedirection.Afterhowmanyminuteswilltheymeetagainatthe startingpoint? Ans. ItcanbeobservedthatRavitakeslessertimethanSoniaforcompleting1 roundofthecircularpath.Astheyaregoinginthesamedirection,they willmeetagainatthesametimewhenRaviwillhavecompleted1round ofthatcircularpathwithrespecttoSonia.Andthetotaltimetakenfor completingthis1roundofcircularpathwillbetheLCMoftimetakenby SoniaandRaviforcompleting1roundofcircularpathrespectivelyi.e., LCMof18minutesand12minutes. 18=2×3×3 And,12=2×2×3 LCMof12and18=2×2×3×3=36 Therefore,RaviandSoniawillmeettogetheratthestartingpointafter36 minutes.
© Copyright 2026 Paperzz