5.8 Inverse Trigonometric Functions: Differentiation recall: None of the six basic trig. functions has an inverse function none are one-to-one ! ... we restrict their domains inverse functions 1 notation: y = sin x inverse x = sin y D: [ 1 , 1 ] R: [ 2 , 2 ] D: [ 2 , 2 ] R: [ 1 , 1 ] or y = arcsin x or y = sin1 x meaning: "the angle whose sine is x" 2 ! y = sin1 x W KNO 1 < x < 1 < y < 2 2 QI, QIV 1 y = cos1 x 1 < x < 1 0 < y < KNO W! QI, QII y = tan1 x W! O N K < x < 2 < y < 2 QI, QIV 3 y = cot1 x cot1 x = < x < 0 < y < 1 tan x 2 1 y = sec1 x = cos1 ( ) x 0 < y < , y = 2 1 y = csc1 x = sin1 ( ) x 2 < y < 2 , y = 0 4 Review! Evaluate in EXACT FORM [No calculator!] 1. arcsin 1 2. arctan 3 3. arccot 3 4. 2 ) tan (arccos 2 5. 5 ) cos (arcsin 13 5 Examples: 1. Write in ALGEBRAIC FORM. sec (arctan 4x ) SOLVE for x. 1. arctan ( 2x 3 ) = 4 6 Inverse Trig. Functions: Differentiation Proof: [p387 #76 d.)] d( arccos u) = dx u' 1 u2 7 Find the derivative. Examples: 1. f(x) = arcsin 4x 2. g(t) = arccos ( ) t 2 3. 1 2 1 y = x arctan 2x ln (1 + 4x ) 4 [p387 #56] 8 Assignment p. 386 # 5 25 odd, 29, 31, 33, 37, 4159 odd, #76a. 9
© Copyright 2026 Paperzz