CATALYTIC PROCESS FOR THE CONVERSION OF CO (II

TEPZZ_8_7 59B_T
(19)
(11)
EP 1 817 259 B1
EUROPEAN PATENT SPECIFICATION
(12)
(45) Date of publication and mention
(51) Int Cl.:
C01G 51/04 (2006.01)
B01J 37/12 (2006.01)
of the grant of the patent:
17.10.2012 Bulletin 2012/42
B01J 23/75 (2006.01)
(86) International application number:
(21) Application number: 05815913.8
PCT/EP2005/056263
(22) Date of filing: 28.11.2005
(87) International publication number:
WO 2006/056610 (01.06.2006 Gazette 2006/22)
(54) CATALYTIC PROCESS FOR THE CONVERSION OF CO (II)HYDROXIDE IN CO (III)
OXIDEHYDROXIDE
KATALYTISCHES VERFAHREN ZUR UMWANDLUNG VON Co(II)-HYDROXID IN Co
(III)-OXIDHYDROXID
PROCESSUS CATALYTIQUE DESTINE A LA CONVERSION DE CO (II)HYDROXYDE EN CO (III)
OXIDEHYDROXYDE
(74) Representative: Matthezing, Robert Maarten et al
(84) Designated Contracting States:
BE DE FR GB IT NL
Shell International B.V.
Intellectual Property Services
P.O. Box 384
2501 CJ The Hague (NL)
(30) Priority: 29.11.2004 EP 04106157
(43) Date of publication of application:
(56) References cited:
15.08.2007 Bulletin 2007/33
(73) Proprietor: Shell Internationale Research
Maatschappij B.V.
2596 HR Den Haag (NL)
(72) Inventors:
EP 1 817 259 B1
• DOGTEROM, Ronald, Jan
NL-1031 CM Amsterdam (NL)
• OOSTERBEEK, Heiko
NL-1031 CM Amsterdam (NL)
• REYNHOUT, Marinus, Johannes
NL-1031 CM Amsterdam (NL)
WO-A-01/39882
US-A- 2 793 936
WO-A-97/02214
• DATABASE WPI Section Ch, Week 199026
Derwent Publications Ltd., London, GB; Class
E31, AN 1990-199691 XP002328338 & SU 1 518
306 A (ILEV A YU) 30 October 1989 (1989-10-30)
Remarks:
The file contains technical information submitted after
the application was filed and not included in this
specification
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).
Printed by Jouve, 75001 PARIS (FR)
1
EP 1 817 259 B1
Description
[0001] The present invention relates to a process for
the conversion of cobalt(II)hydroxide into cobalt(III)-oxidehydroxide (CoOOH) by reaction of the cobalt(II)-hydroxide with oxygen. The invention further relates to the
use of cobalt(III)oxidehydroxide thus prepared in the
preparation of catalysts or catalysts precursors, especially catalysts or catalyst precursors for the conversion
of synthesis gas into normally liquid and normally solid
hydrocarbons and to normally liquid or solid hydrocarbons, optionally after additional hydrotreatment, obtained in such a conversion process.
[0002] The catalytic preparation of hydrocarbons from
synthesis gas, i.e. mixture of carbon monoxide and hydrogen, is well known in the art and is commonly referred
to as Fischer-Tropsch synthesis. Catalysts often used
for this process comprise one or more metals, together
with one or more promoters and a support or carrier material. These catalysts can be made according to one or
more well known processes, for instance one or more of
precipitation, impregnation, kneading, melting, extrusion
and spray drying. Usually these processes are followed
by drying, calcination and/or activation.
[0003] The products which can be prepared by using
these catalysts usually have a very wide range of molecular weight distributions, and in addition to branched and
unbranched paraffins, often contain considerable
amounts of olefins and oxygen-containing organic compounds, while occasional also aromatic compounds may
be formed. Most Fischer-Tropsch reaction result in the
formation of longer hydrocarbon chains. Usually only a
minor portion of the products obtained is made up of middle distillates, especially when relatively low temperatures are used. Of these middle distillates not only the
yield but also the pour point is unsatisfactory. Hydrotreatment (hydrogenation, hydroisomerisation and/or hydrocracking) of the product or part of the product results in
a larger amount of desired middle distillates with improved cold flow properties.
[0004] Supported catalysts suitable for use in the
Fischer-Tropsch synthesis process typically contain a
catalytically active metal of the Groups 8, 9 or 10 of the
Periodic Table of the Elements. In particular, iron, nickel,
cobalt and ruthenium are well known catalytically active
metals for such catalysts. Reference may be made to
EP-A-398420, EP-A-178008, EP-A-167215, EP-A168894, EP-A-363537, EP-A-498976 and EP-A-71770.
In recent patent publications the emphasis is on cobalt
based Fischer Tropsch catalysts for the production of
(very) heavy paraffinic product, followed by the hydrocracking of the Fischer Tropsch wax thus obtained to produce middle distillates (in general naphtha, kero and/or
gasoil).
[0005] There is a continuous interest in finding catalysts which provide a further improved selectivity in the
conversion of carbon monoxide into valuable hydrocarbons, in particular hydrocarbons containing 5 or more
5
10
15
20
25
30
35
40
45
50
55
2
2
carbon atoms ("C5+ hydrocarbons" hereinafter), and
which minimise the formation of carbon dioxide, which is
a carbon containing by-product of low value.
[0006] It has now surprisingly been found that cobalt
(II)-hydroxide can be converted at least partly in the presence of certain transition metals into cobalt(III)oxidehydroxide (CoOOH), which cobalt(III)oxidehydroxide, optionally in combination with unconverted cobalt(II)hydroxide and optionally in the presence of one or more
promoters, can be used for the preparation of supported
Fischer Tropsch catalysts which show an increased C5+
selectivity.
[0007] Thus, the present invention relates to a process
for the conversion of cobalt(II)hydroxide into cobalt(III)
oxidehydroxide (CoOOH) by reaction of the cobalt(II)hydroxide with oxygen in the presence of a catalytic amount
of a transition metal compound, the transition metal compound not being a cobalt compound, which transition
metal in its generality has at least the valences 2 and 3.
In particular, the transition metal compound in the oxidation process has the valence 2 or 3, preferably 2.
[0008] When the cobalt(III)oxidehydroxide thus prepared is used for the preparation of Fischer Tropsch catalysts, it appears that catalyst thus obtained show an
increased C5+ selectivity and/or increased activity. In addition an increased stability was obtained. Thus, it appeared possible in a two step process for the preparation
of middle distillates (Fischer Tropsch followed by hydrocracking) to increase the amount of useful product of
good, standard quality, and/or to increase the cold flow
properties of the product. In addition, this could be done
for a prolonged period. The increased C5+ selectivity also
results in a smaller amount of less valuable C1 to C4
products and/or carbon dioxide.
[0009] Transition metals to be used in the process according to the invention are the metals of Groups 3 to 12
of the Periodic Table (new notation), including the Lanthanides and Actinides. Transition metals which in general have the valences 2 and 3, and which are very suitable for the present invention, are Ti, V, Cr, Mn, Fe, Ni,
Sm, Eu and Yb. Other transition metals which in general
have the valences 2 and 3 and which are very suitable
for the invention are Cu, Zr, Nb, Mo, Ru, Rh, Ag, Sm,
Tm, Yb, W, Re, Os, Ir, Pt and Au. Mixtures are also possible. Cobalt is not included. Preferably the transition
metal is vanadium, chromium, manganese, iron, zirconium, ruthenium, rhenium or platinum, more preferably
manganese, in view of the good results which can be
obtained and the fact that these metals are also very
suitable as promoters in the FT process. It is observed
that in most cases the transition metal will end up in the
cobalt(III)oxidehydroxide. Especially when the transition
metal can also be used as promoter in the FT reaction,
this is an additional advantage.
[0010] Especially a transition metal compound is used
derived from a transition metal which is less noble than
cobalt. Preferably the transition metal compound is derived from a transition metal having a standard reduction
3
EP 1 817 259 B1
potential E° (M 3+ + e ↔ M2+) which is less than the standard reduction potential E° of cobalt. (Handbook of Chemistry and Physics, 77th Edition, Chapter 8, Electrochemical Series, 8-20, Table 1). The standard reduction potential E° is preferably less than +1.8 V.
[0011] In the process according to the invention the
transition metal (or mixture of transition metals) is typically present in a molar (or total molar) ratio of Co/transition metal of from 1000:1 to 1:1, suitably between 500:
1 to 2:1, preferably 100:1 to 3:1, more preferably from
50:1 to 5:1, in views of the results which can be obtained
and the fact that these amounts are also optimal for the
Fischer Tropsch process.
[0012] The process according to the invention may be
carried out at temperatures up to 250 °C especially up
to 200 °C, suitably at a temperature from 0 to 130 °C,
preferably 40 to 120 °C, more preferably from 60 to 110
°C. Lower temperatures result in a slow reaction, higher
temperatures may result in the formation of Co3O4. The
process is suitably carried out at a pressure between 0.1
and 50 bar, preferably between 0.5 and 5 bar. The process is especially carried out in combination with natural
and/or artificial light, especially UV light. This can be done
simply by allowing the reaction to be carried out in day
light and/or in the presence of special lamps normally
used for carrying photochemical reactions. The use of
natural and/or artificial light increases the reaction velocity.
[0013] The reaction time for the process according to
the invention is suitably between 0.1 h and 100 days,
preferably 0.5 h and 30 days, more preferably between
2 and 24 h.
[0014] The amount of cobalt(II)hydroxide which is converted into heterogenite is suitably between 0.1 an 100
wt%, more suitably between 10 and 99 wt%, preferably
between 50 and 95 wt%. The amount of Co3O4 which
may be formed during the reaction is preferably less than
50 wt%, more preferably less than 10 wt%, still more
preferably less than 1 wt%. Co3O4 can be formed by
reaction of the heterogenite with cobalt(II)hydroxide.
Co3O4 is especially formed at higher temperatures, thus
a reduction in the temperature will result in less Co3O4.
[0015] The process of the invention preferably uses as
transition metal compound a manganese or iron compound, preferably manganese(II)hydroxide or iron(II)hydroxide, more preferably manganese(II)hydroxide. In a
special embodiment a mixture of cobalt(II)hydroxide and
manganese(II)hydroxide is used, especially a co-precipitate of cobalt(II)hydroxide and manganese(II)-hydroxide
is used.
[0016] Suitably air is used as source for the oxygen in
the claimed process, although enriched air (comprising
e.g. 40 to 50 v% of oxygen) or pure oxygen may also be
used. Also oxygen depleted air may be used, or mixtures
of air and inert compounds, e.g. nitrogen. Suitably the
relative humidity of the (enriched) air is between 10 and
90%.
[0017] The reaction is suitably carried out in the pres-
5
10
15
20
25
30
35
40
45
50
55
3
4
ence of water or a mixture of water and one or more
alcohols, suitably methanol and/or ethanol, preferably at
a pH between 2 and 10, especially between 3 and 9. Also
organic acids may be used or aqueous solutions of these
acids. Inorganic salts may be present, e.g. ammonium
acetate, although salts which are not removed during calcination, are not preferred. In this embodiment a slurry
is formed from the cobalt hydroxide, the transition metal
compound and the solvent, and air/oxygen is bubbled
through the slurry. In another embodiment the reaction
is carried out in the solid state, i.e. in the absence of a
liquid/solvent. This can be done flowing air or oxygen
through a fixed bed of the mixture of the cobalt hydroxide
and the transition metal compound, or the reaction can
be done in a fluidized bed. In this embodiment it is preferred to add an organic acid to the solid mixture, preferably citric acid, oxalic acid or ascorbic acid. The amount
of organic acid may be up to 5 wt% of the total composition, preferably 0.1 to 1 wt% of total composition. In
both embodiments the transition metal compound may
be homogeneously distributed in the cobalt(II)hydroxide
or may be present as a coating on the cobalt(II)hydroxide.
[0018] The invention also relates to cobalt(III)oxidehydroxide or a mixture of cobalt(III)oxidehydroxide and cobalt(II)-hydroxide obtainable by a process as described
above, as well as to cobalt(III)oxidehydroxide or a mixture
of cobalt(III)oxidehydroxide and cobalt(II)-hydroxide obtained by a process as described above.
[0019] The cobalt(III)oxidehydroxide as prepared according to the process of the invention shows a crystal
particle size which is relatively small. Most of the particles
do have a size between 2 and 15 nm. As such a small
crystal particle size results in a relatively large cobalt surface area which is advantageous for catalytic applications, the invention more in particular also relates to cobalt(III)oxidehydroxide or a mixture of cobalt(III)oxidehydroxide and cobalt(II)hydroxide as described above, in
which the cobalt(III)oxidehydroxide or the mixture has an
average particles size between 3 and 10 nm, preferably
between 4 and 8 nm. For the measurement of the average particles size fines (i.e. particles having a size less
than 1 nm)are excluded from the measurement. A suitable method to determine the average particle size is
SEM or TEM.
[0020] In another aspect the invention concerns a process for the preparation of a supported cobalt based
Fischer Tropsch catalyst or catalyst precursor, which
process comprises
(a) mixing a catalyst carrier or a catalyst carrier precursor, (2) a liquid and (3) one or more cobalt compounds comprising cobalt(III)oxidehydroxide optionally in combination with cobalt(II)hydroxide and/or
Co3O 4 (spinel) to form a mixture,
(b) optionally shaping the mixture,
(c) drying the mixture thus obtained, and
(d) optionally calcining the composition thus obtained.
5
EP 1 817 259 B1
[0021] The mixing process may be any well known
process in the art. Depending on the drying process (for
instance spray drying process of a slurry vs. drying a past
like composition) different ratio’s of liquid/solids may be
used. The liquid is preferably water, but also C1-C4 alcohols may be used, especially methanol or ethanol. Also
ethers, e.g. MTBE, and ketones, e.g. acetone or MEK,
may be used. Mixtures are also possible. The process
may further comprise one or more techniques well known
in the art as kneading, melting, extrusion and/or spray
drying. The solids content of the mixture is suitably between 2 and 90 wt% of the total composition, preferably
between 5 and 80 wt%. When spray drying techniques
are to be used, the solids content is preferably between
5 and 20 wt%. When extrusion techniques are to be involved, the solid content is preferably between 50 and
80 wt%.
[0022] In the process to prepare Fischer Tropsch catalysts the amount of cobalt(III)oxidehydroxide in the cobalt compounds (cobalt(III)oxidehydroxide, cobalt(II)hydroxide and Co3O4) is suitably between 5 and 100 wt%
based on total weight of cobalt compounds, preferably
between 25 and 100 wt%, more preferably between 50
and 95 wt%. Usually the cobalt compounds will be
present in an amount of 2 to 60 wt%, based on the weight
of metallic cobalt on carrier or dried carrier precursor,
preferably between 10 and 40 wt%.
[0023] Suitable carriers or catalyst carrier precursors
for the process to prepare Fischer Tropsch catalysts are
refractory oxides, preferably silica, alumina, zirconia, titania or mixtures thereof, or precursors therefore.
[0024] Suitable promoter metals for the process to prepare Fischer Tropsch catalysts may be chosen from vanadium, chromium, manganese, iron, zirconium, ruthenium, rhenium and platinum, each promoter metal preferably used in such an amount that the atomic ratio of
cobalt:promoter metal is from 1000:1 to 3:1, preferably
200:1 to 4:1, more preferably from 100:1 to 6:1. Preferably the promoter metal is manganese, rhenium or platinum.
[0025] In the process to prepare Fischer Tropsch catalysts very suitably cobalt(III)oxidehydroxide is used or
a mixture of cobalt(III)oxidehydroxide and cobalt(II)hydroxide and optionally Co3O4, preferably cobalt(III)oxidehydroxide or the mixture as prepared in any of the process described hereinbefore.
[0026] In another embodiment of the invention the
process to convert cobalt(II)hydroxide into cobalt(III)-oxidehydroxide is carried out by first making a mixture of
cobalt(II)-hydroxide, a transition metal as defined hereinbefore and a catalyst carrier or catalyst carrier precursor followed by conversion of the cobalt(II)hydroxide into
cobalt(III)oxidehydroxide. The preferred embodiments
as described above for the general process also apply
to this embodiment.
[0027] In the process to prepare the Fischer Tropsch
catalyst the mixing step is a simple mixing step or a
kneading or mulling step. In another embodiments the
5
10
15
20
25
30
35
40
45
50
55
4
6
shaping step comprises palletising, extrusion, granulating or crushing, preferably extrusion.
[0028] In the process to prepare the Fischer Tropsch
catalyst the mixture suitably has a solids content in the
range of from 30 to 90 wt%, preferably of from 50 to 80
wt%, based on total composition. Such a mixture is especially suitable for a palletising, extrusion, granulating
or crushing step.
[0029] In another process to prepare the Fischer Tropsch catalyst, the shaping step is a spray drying process.
In this embodiment the mixture has a solids content of
from 1 to 30 wt% based on total composition, preferably
of from 5 to 20 wt%.
[0030] The shaped and dried mixture as described
above for the preparation of the Fischer Tropsch catalyst
is suitably calcined, preferably at a temperature between
300 and 900 °C, more preferably between 450 and 600
°C.
[0031] In the case that the process results in relatively
large particles, as is usually the case when an extrusion
process is used, the product obtained may be ground till
an average particle size of between 5 and 500 micron,
preferably between 10 and 100 micron. Thus, catalyst
particles are obtained which are especially suitable for a
slurry Fischer Tropsch process.
[0032] The invention also relates to the Fischer Tropsch catalyst or catalyst precursor obtainable by a process
as described hereinbefore.
[0033] The invention also relates to an activated catalyst suitable for the production of hydrocarbons from synthesis gas obtained by reduction with hydrogen or a hydrogen containing gas of a Fischer Tropsch catalyst precursor as described hereinbefore or obtainable by a process as described hereinbefore. Further, the invention also concerns the process for the preparation of hydrocarbons, comprising contacting a mixture of carbon monoxide and hydrogen with a catalyst as described hereinbefore, especially with an activated catalyst, optionally
followed by hydroconversion.
[0034] Preferred hydrocarbonaceous feeds for the
preparation of synthesis gas are natural gas or associated gas. As these feedstocks usually result in synthesis
gas having H2/CO ratio’s of close to 2, cobalt is a very
good Fischer-Tropsch catalyst as the user ratio for this
type of catalysts is also close to 2.
[0035] The catalytically active metal is preferably supported on a porous carrier as discussed in detail before.
In general, the porous carrier may be selected from any
of the suitable refractory metal oxides or silicates or combinations thereof known in the art. Particular examples
of preferred porous carriers include silica, alumina, titania, zirconia, ceria, gallia and mixtures thereof, especially
silica, alumina and titania, especially TiO2.
[0036] If desired, the catalyst may also comprise one
or more metals or metal oxides as promoters. Suitable
metal oxide promoters may be selected from Groups IIA,
IIIB, IVB, VB, VIB or Group VIIB of the Periodic Table of
the Elements, or the actinides and lanthanides.
7
EP 1 817 259 B1
[0037] In particular, oxides of magnesium, calcium,
strontium, barium, scandium, yttrium, lanthanum, titanium, zirconium, hafnium, cerium, thorium, uranium, vanadium, chromium and manganese are very suitable promoters. Particularly preferred metal oxide promoters for
the catalyst used to prepare heavy paraffins are manganese, vanadium and zirconium oxide.
[0038] Suitable metal promoters may be selected from
Groups VIIB or VIII of the Periodic Table of the Elements.
Rhenium, silver and Group VIII noble metals are particularly suitable, with platinum and palladium being especially preferred.
[0039] The most preferred promoters are selected
from vanadium, manganese, rhenium, zirconium and
platinum in view of their ability to produce long chain nparaffins.
[0040] The promoter, if present, may be deposited on
the carrier material by any suitable treatment, such as
impregnation, mixing/kneading and mixing/extrusion. It
is especially preferred to select a promoter material which
is used in the conversion of the cobalt(II)hydroxide into
cobalt(III)oxidehydroxide as well is used as promoter for
the Fischer Tropsch reaction.
[0041] After calcination, the resulting catalyst may be
activated by contacting the catalyst with hydrogen or a
hydrogen-containing gas, typically at temperatures of
about 200 to 350 °C.
[0042] The suitable material for the shaped catalyst
particles should be processed in such a way that their
intended shape is obtained.
[0043] One example of a processing method is an extrusion process, wherein a shapable dough, preferably
comprising one or more sources for one or more of the
catalytically active elements, and optionally one or more
sources for one or more of the promoters and the finely
divided refractory oxide or refractory oxide precursor is
mulled together with a suitable solvent. The mulled mixture is then extruded through an orifice in a die-plate. The
resulting extrudates are dried.
[0044] The solvent for inclusion in the mixture may be
any of the suitable solvents known in the art. Examples
of suitable solvents include water; alcohols, such as
methanol, ethanol and propanol; ketones, such as acetone; aldehydes, such as propanal; and aromatic solvents, such as toluene. A most convenient and preferred
solvent is water, optionally in combination with methanol.
[0045] The use of specific die-plates enables the formation of the intended shape of the catalyst particles.
Die-plates are well known in the art and can be made
from metal or polymer material, especially a thermoplastic material.
[0046] The catalytic conversion process may be performed under conventional synthesis conditions known
in the art.
[0047] Typically, the catalytic conversion may be effected at a temperature in the range of from 150 to 300
°C, preferably from 180 to 260 °C.
[0048] Typical total pressures for the catalytic conver-
5
10
15
20
25
8
sion process are in the range of from 1 to 200 bar absolute, more preferably from 10 to 70 bar absolute.
[0049] In the catalytic conversion process especially
more than 75 wt% of C5+, preferably more than 85 wt%
C5+ hydrocarbons are formed.
[0050] Depending on the catalyst and the conversion
conditions, the amount of heavy wax (C20+) may be up
to 60 wt%, sometimes up to 70 wt%, and sometimes even
up till 85 wt%.
[0051] Preferably a cobalt catalyst is used, a low H2/CO
ratio is used (especially 1.7, or even lower) and a low
temperature is used (190-230 °C).
[0052] To avoid any coke formation, it is preferred to
use an H2/CO ratio of at least 0.3. It is especially preferred
to carry out the Fischer-Tropsch reaction under such conditions that the SF-alpha value, based on the obtained
saturated linear C20 hydrocarbon fraction and the obtained saturated linear hydrocarbon C40 fraction, is at
least 0.925, preferably at least 0.935, more preferably at
least 0.945, even more preferably at least 0.955. Preferably the Fischer-Tropsch hydrocarbons stream comprises at least 35 wt% C30+, preferably 40 wt%, more preferably 50 wt%.
[0053] The Fischer-Tropsch process may be a slurry
FT process or a fixed bed FT process, especially a multitubular fixed bed.
Example
30
35
40
45
50
55
5
[0054] A co-precipitate of cobalt(II)hydroxide and manganese(II)hydroxide (molecular ratio 95:5, pink colored)
was contacted with air in the presence of daylight for
twenty days. Analysis of the (black) sample showed that
80 wt% of the cobalt(II)hydroxide was converted into cobalt(III)oxidehydroxide. A second sample, only comprising cobalt(II)hydroxide (i.e. without any extra transition
metal) did not show any changes.
[0055] Two catalysts were prepared, one based on the
starting cobalt(II)hydroxide/manganese(II)hydroxide as
described above and one based on the above prepared
sample containing the cobalt(III)oxidehydroxide. The catalysts were prepared by mixing the cobalt compounds,
titania and some water, followed by extrusion of the mixture, drying the extrudates and activation with a hydrogen
containing gas. The two catalysts were tested under similar conditions in a fixed bed Fischer Tropsch experiment.
Under the same conditions (GHSV 1200, 200 °C) the
cobalt(II)hydroxide based catalyst showed a space time
yield of 149 g/l/h, while the cobalt(III)-oxidehydroxide
showed a space time yield of 153 g/l/h. The C5+ selectivity
for the first catalyst was 93.3 wt%, for the second catalyst
95.6 wt%. Thus, the cobalt(III)oxidehydroxide based catalyst showed an increased yield of 2.6%, and a selectivity
improvement of 2.3 wt%
9
EP 1 817 259 B1
Claims
1.
A process for the conversion of cobalt(II)hydroxide
into cobalt(III)oxidehydroxide (CoOOH) by reaction
of the cobalt(II)hydroxide with oxygen in the presence of a catalytic amount of a transition metal compound, in which the transition metal is vanadium,
chromium, manganese, iron, zirconium, ruthenium,
rhenium or platinum, preferably manganese.
in which the reaction is carried out in an aqueous
slurry, preferably at a pH between 3 and 9, or in which
the process is carried out in the solid state.
5
10
2.
3.
4.
5.
6.
7.
8.
A process according to claim 1, in which a transition
metal compound is used, which transition metal compound is derived from a transition metal having a
standard reduction potential E° (M3+ + e ↔ M2+)
which is less than the standard reduction potential
E° of cobalt, preferably vanadium, chromium, manganese or iron.
A process according to claim 1 or 2, in which the
atomic ratio Co/transition metal is from 1000:1 to 3:
1, preferably 200:1 to 4:1, more preferably from 100:
1 to 6:1, and in which the pressure is between 0.1
and 50 bar, preferably between 0.5 and 5 bar, and
in which the temperature is from 0 to 120 °C, preferably from 40 to 100 °C, and preferably in combination with natural and/or artificial light, especially
UV light.
A process according to any one of claims 1 to 3, in
which the reaction time is between 0.5 h and 30 days,
preferably between 2 and 24 h.
A process according to any of claims 1 to 4, in which
the amount of cobalt(II)hydroxide which is converted
into cobalt(III)oxidehydroxide is between 5 an 100
wt% of the amount of starting cobalt(II)hydroxide,
preferably between 50 and 95 wt%, in which process
the amount of Co3O 4 formed during the reaction is
preferably less than 50 wt%, more preferably less
than 10 wt%.
A process according to any of claims 1 to 5, in which
as transition metal compound a manganese or iron
compound is used, preferably manganese(II)hydroxide or iron(II)hydroxide, more preferably manganese(II)hydroxide, preferably in which a physical
mixture of cobalt(II)hydroxide and manganese(II)hydroxide or a coprecipitate of cobalt(II)hydroxide and
manganese(II)-hydroxide is used, preferably a coprecipitate of cobalt(II)-hydroxide and manganese
(II)hydroxide.
A process according to any of claims 1 to 6, in which
air is used as source for the oxygen, preferably in
which the relative humidity of the air is between 10
and 90%.
10
15
20
25
30
35
40
45
50
55
A process according to any one of the claims 1 to 7,
6
9.
Cobalt(III)oxidehydroxide or a mixture of cobalt(III)
oxidehydroxide and cobalt(II)hydroxide obtainable
by a process as described in any of claims 1 to 8,
preferably cobalt(III)oxidehydroxide or a mixture of
cobalt(III)oxidehydroxide and cobalt(II)hydroxide in
which the cobalt(III)oxidehydroxide has an average
particles size between 3 and 10 nm, more preferably
between 4 and 8 nm.
10. Use of cobalt(III)oxidehydroxide in a process for the
preparation of a supported, cobalt based Fischer
Tropsch catalyst or catalyst precursor, which process comprises
(a) mixing a catalyst carrier or a catalyst carrier
precursor, (2) a liquid and (3) cobalt(III)-oxidehydroxide, optionally in combination with cobalt
(II)hydroxide and/or Co3O 4, to form a mixture,
(b) shaping and drying the mixture thus obtained, and
(c) optionally calcining the composition thus obtained, preferably a process according in which
the amount of cobalt(III)oxidehydroxide in the
cobalt compounds (cobalt(III)oxidehydroxide,
cobalt(II)hydroxide and Co3O4) is between 5
and 100 wt% based on total weight of cobalt
compounds, preferably between 25 and 100
wt%, more preferably between 50 and 95 wt%,
suitably a process in which the cobalt compounds are present in an amount of 2 to 60 wt%,
based on the weight of metallic cobalt on carrier
or dried carrier precursor, preferably between
10 and 40 wt% and in which the carrier or catalyst precursor is a refractory oxide, preferably
silica, alumina, zirconia, titania or mixtures
thereof, or precursors therefore.
11. Use of cobalt(III)oxidehydroxide in a process according to claim 10, in which the catalyst precursor comprises a promoter metal or metal compound, the metal preferably being chosen from vanadium, chromium, manganese, iron, zirconium, ruthenium, rhenium and platinum, each promoter metal preferably
used in such an amount that the atomic ratio of cobalt:promoter metal is from 1000:1 to 3:1, preferably
200:1 to 4:1, more preferably from 100:1 to 6:1, especially a process according in which the promoter
metal is manganese, rhenium or platinum.
12. Use of cobalt(III)oxidehydroxide in a process according to claim 10 or 11, in which cobalt(III)oxidehydroxide is used or a mixture of cobalt(III)oxidehydroxide
and cobalt(II)hydroxide and optionally Co3O4, preferably cobalt(III)oxidehydroxide or the mixture as
11
EP 1 817 259 B1
misch aus Kobalt-(II)-hydroxid und Mangan-(II)-hydroxid oder ein Copräzipitat von Kobalt-(II)-hydroxid
und Mangan-(II)-hydroxid, vorzugsweise ein Copräzipitat von Kobalt-(II)-hydroxid und Mangan-(II)-hydroxid, verwendet wird.
prepared in any of the claims 1 to 11.
13. Use of cobalt(III)oxidehydroxide in a process according to any of claims 10 to 12, in which the mixing step
is a simple mixing step or a kneading or mulling step.
5
7.
Verfahren nach einem der Ansprüche 1 bis 6, vorzugsweise wobei Luft als Sauerstoffquelle eingesetzt wird, wobei die relative Luftfeuchtigkeit zwischen 10 und 90% beträgt.
8.
Verfahren nach einem der Ansprüche 1 bis 7, wobei
die Umsetzung in einem wässrigen Schlamm, vorzugsweise mit einem pH-Wert zwischen 3 und 9, erfolgt, oder das Verfahren in einem festen Zustand
erfolgt.
9.
Kobalt-(III)-oxidhydroxid oder ein Gemisch aus Kobalt-(III)-oxidhydroxid und Kobalt-(II)-hydroxid, das
durch ein Verfahren nach einem der Ansprüche 1
bis 8 gewonnen werden kann, vorzugsweise Kobalt-(III)-oxidhydroxid oder ein Gemisch aus Kobalt-(III)-oxidhydroxid und Kobalt-(II)-hydroxid, wobei das Kobalt-(III)-oxidhydroxid eine mittlere Partikelgröße zwischen 3 und 10 nm, besonders bevorzugt zwischen 4 und 8 nm, aufweist.
Patentansprüche
1.
2.
3.
4.
5.
6.
Verfahren zur Umwandlung von Kobalt-(II)-Hydroxid
in Kobalt-(III)-oxidhydroxid (Co00H) durch Umsetzung von Kobalt-(II)-hydroxid mit Sauerstoff in Gegenwart einer katalytischen Menge von einer Übergangsmetallverbindung, wobei das Übergangsmetall Vanadium, Chrom, Mangan, Eisen, Zirkonium,
Ruthenium, Rhenium oder Platin, vorzugsweise
Mangan, ist.
Verfahren nach Anspruch 1, wobei eine Übergangsmetallverbindung verwendet wird, welche aus einem
Übergangsmetall gewonnen ist, das ein StandardReduktionspotential E° (M3+ + e ↔ M2+) aufweist,
das niedriger ist als das Standard-Reduktionspotential E° von Kobalt, vorzugsweise Vanadium, Chrom,
Mangan oder Eisen.
Verfahren nach Anspruch 1 oder 2, wobei das Atomverhältnis von Kobalt zu dem Übergangsmetall zwischen 1000:1 und 3:1, vorzugsweise zwischen 200:
1 und 4:1, besonders bevorzugt zwischen 100:1 und
6:1, liegt, und wobei der Druck zwischen 0,1 und 50
Bar, vorzugsweise zwischen 0,5 und 5 Bar, liegt, und
wobei die Temperatur zwischen 0 bis 120°C, vorzugsweise zwischen 40 bis 100°C, vorzugsweise in
Kombination mit natürlichem und/oder künstlichem
Licht, insbesondere UV-Licht, liegt.
Verfahren nach einem der Ansprüche 1 bis 3, wobei
die Umsetzungszeit zwischen 0,5 h und 30 Tagen,
vorzugsweise zwischen 2 und 24 h, beträgt.
Verfahren nach einem der Ansprüche 1 bis 4, wobei
die Menge an Kobalt-(II)-hydroxid, welche in Kobalt-(III)-oxidhydroxid umgewandelt wird, zwischen
5 und 100 Gew.-%, vorzugsweise zwischen 50 und
95 Gew.-%, der Menge des Kobalt-(II)-hydroxidAusgangsprodukts liegt, wobei in dem Verfahren die
Menge an Co3O4, die bei dem Umsetzungsvorgang
gebildet wird, vorzugsweise weniger als 50 Gew.-%,
besonders bevorzugt weniger als 10 Gew.-%, beträgt.
Verfahren nach einem der Ansprüche 1 bis 5, wobei
als Übergangsmetallverbindung eine Manganverbindung oder Eisenverbindung, vorzugsweise Mangan-(II)-hydroxid oder Eisen-(II)-hydroxid, besonders bevorzugt Mangan-(II)-hydroxid, eingesetzt
wird, wobei vorzugsweise ein physikalisches Ge-
10
15
20
25
30
35
40
45
50
55
7
12
10. Verwendung von Kobalt-(III)-oxidhydroxid in einem
Verfahren zur Herstellung eines unterstützenden,
kobaltbasierenden Fischer-Tropsch-Katalysators
oder Katalysator-Präkursors, wobei das Verfahren
Folgendes umfasst:
(a) Mischen eines Katalysator-Trägers oder eines Katalysator-Träger-Präkursors, (2) einer
Flüssigkeit und (3) Kobalt-(III)-oxidhydroxid,
wahlweise in Kombination mit Kobalt-(II)-hydroxid und/oder Co3O4, zur Bildung eines Gemisches,
(b) Ausformen und Trocknen des dabei gewonnenen Gemisches, und
(c) wahlweises Kalzinieren der dabei gewonnenen Zusammensetzung, vorzugsweise in einem
Verfahren, bei dem die Menge an Kobalt-(III)-oxidhydroxid in den Kobaltverbindungen (Kobalt-(III)-oxidhydroxid, Kobalt-(II)-hydroxid und Co3O4) bezogen auf das Gesamtgewicht der Kobaltverbindungen zwischen 5 und
100 Gew.-%, vorzugsweise zwischen 25 und
100 Gew.-%, besonders bevorzugt zwischen 50
und 95 Gew.-%, beträgt, vorzugsweise in einem
Verfahren, bei dem die Kobaltverbindungen bezogen auf das Gewicht des metallischen Kobalts auf dem Träger oder des getrockneten Träger-Präkursors in einer Menge von 2 bis 60
Gew.-%, vorzugsweise zwischen 10 und 40
Gew.-%, vorhanden sind, und bei dem der Träger oder der Katalysator-Präkursor ein hitzebe-
13
EP 1 817 259 B1
une plage de 0 à 120 °C, de préférence de 40 à 100
°C, mieux encore en combinaison avec de la lumière
naturelle et/ou de la lumière artificielle, en particulier
de la lumière UV.
ständiges Oxid, vorzugsweise Siliziumoxid, Aluminiumoxid, Zirkoniumoxid, Titanoxid oder ein
Gemisch oder Präkursor davon, ist.
11. Verwendung von Kobalt-(III)-oxidhydroxid in einem
Verfahren nach Anspruch 10, wobei der KatalysatorPräkursor ein Promotermetall oder eine Metallverbindung umfasst, wobei das Metall vorzugsweise
aus der Gruppe, umfassend Vanadium, Chrom,
Mangan, Eisen, Zirkonium, Ruthenium, Rhenium
und Platin, ausgewählt ist, wobei jedes Promotormetall vorzugsweise in einer solchen Menge eingesetzt wird, dass das Atomverhältnis von Kobalt zu
dem Promotormetall zwischen 1000:1 und 3:1, vorzugsweise zwischen 200:1 und 4:1, besonders bevorzugt zwischen 100:1 bis 6:1, liegt, insbesondere
in einem Verfahren, bei dem das Promotormetall
Mangan, Rhenium oder Platin ist.
12. Verwendung von Kobalt-(III)-oxidhydroxid in einem
Verfahren nach Anspruch 10 oder 11, wobei Kobalt-(III)-oxidhydroxid oder ein Gemisch aus Kobalt-(III)-oxidhydroxid und Kobalt-(II)-hydroxid und
optional Co3O4, vorzugsweise Kobalt-(III)-oxidhydroxid oder das Gemisch, welches gemäß den Ansprüchen 1 bis 11 hergestell wird, eingesetzt wird.
13. Verwendung von Kobalt-(III)-oxidhydroxid in einem
Verfahren nach einem der Ansprüche 10 bis 12, wobei der Mischvorgang ein einfacher Mischvorgang
ist oder ein Knet- oder Mahlvorgang ist.
5
4.
Procédé selon l’une quelconque des revendications
1 à 3, dans lequel le temps de réaction se situe entre
0,5 heure et 30 jours, de préférence entre 2 et 24
heures.
5.
Procédé selon l’une quelconque des revendications
1 à 4, dans lequel la quantité d’hydroxyde de cobalt
(II) qui est convertie en oxydehydroxyde de cobalt
(III) se situe entre 5 et 100 % en poids de la quantité
d’hydroxyde de cobalt(II) de départ, de préférence
entre 50 et 95 % en poids, dans lequel procédé la
quantité de Co3O4 formée au cours de la réaction
est de préférence inférieure à 50 % en poids, mieux
encore inférieure à 10 % en poids.
6.
Procédé selon l’une quelconque des revendications
1 à 5, dans lequel on utilise comme composé de
métal de transition un composé de manganèse ou
de fer, de préférence l’hydroxyde de manganèse(II)
ou l’hydroxyde de fer(II), mieux encore l’hydroxyde
de manganèse(II), de préférence dans lequel on utilise un mélange physique d’hydroxyde de cobalt(II)
et d’hydroxyde de manganèse(II) ou un co-précipité
d’hydroxyde de cobalt(II) et d’hydroxyde de manganèse(II), de préférence un co-précipité d’hydroxyde
de cobalt(II) et d’hydroxyde de manganèse(II).
7.
Procédé selon l’une quelconque des revendications
1 à 6, dans lequel de l’air est utilisé comme source
d’oxygène, de préférence dans lequel l’humidité relative de l’air se situe entre 10 et 90 %.
8.
Procédé selon l’une quelconque des revendications
1 à 7, dans lequel la réaction est effectuée en suspension aqueuse, de préférence à pH entre 3 et 9,
ou dans lequel le procédé est réalisé à l’état solide.
9.
Oxydehydroxyde de cobalt(III) ou mélange d’oxydehydroxyde de cobalt(III) et d’hydroxyde de cobalt(II)
susceptible d’être obtenu par un procédé tel que décrit dans l’une quelconque des revendications 1 à 8,
de préférence oxydehydroxyde de cobalt(III) ou mélange d’oxydehydroxyde de cobalt(III) et hydroxyde
de cobalt(II), dans lequel l’oxydehydroxyde de cobalt
(III) a une taille particulaire moyenne entre 3 et 10
nm, mieux encore entre 4 et 8 nm.
10
15
20
25
30
Revendications
35
1.
2.
3.
Procédé de conversion d’hydroxyde de cobalt(II) en
oxydehydroxyde de cobalt(III) (CoOOH) par réaction
de l’hydroxyde de cobalt(II) avec de l’oxygène en
présence d’une quantité catalytique d’un composé
de métal de transition, dans lequel le métal de transition est le vanadium, le chrome, le manganèse, le
fer, le zirconium, le ruthénium, le rhénium ou le platine, de préférence le manganèse.
Procédé selon la revendication 1, dans lequel on utilise un composé de métal de transition, lequel composé de métal de transition est dérivé d’un métal de
transition ayant un potentiel de réduction standard
E° (M3+ + e ↔ M2+) qui est inférieur au potentiel de
réduction standard E° du cobalt, de préférence le
vanadium, le chrome, le manganèse ou le fer.
Procédé selon la revendication 1 ou 2, dans lequel
le rapport atomique Co/métal de transition est de
1000:1 à 3:1, de préférence de 200:1 à 4:1, mieux
encore de 100:1 à 6:1, et dans lequel la pression se
situe entre 0,1 et 50 bars, de préférence entre 0,5
et 5 bars, et dans lequel la température se situe dans
14
40
45
50
55
8
10. Utilisation d’oxydehydroxyde de cobalt(III) dans un
procédé de préparation d’un catalyseur ou précurseur de catalyseur de Fischer-Tropsch supporté à
base de cobalt, lequel procédé comprend les étapes
consistant à :
15
EP 1 817 259 B1
(a) mélanger (1) un support catalytique ou un
précurseur de support catalytique, (2) un liquide
et (3) de l’oxydehydroxyde de cobalt(III), éventuellement en combinaison avec de l’hydroxyde
de cobalt(II) et/ou du Co3O 4 pour former un mélange,
(b) façonner et sécher le mélange ainsi obtenu,
et
(c) éventuellement calciner la composition ainsi
obtenue, de préférence un procédé dans lequel
la quantité d’oxydehydroxyde de cobalt(III) dans
les composés de cobalt (oxydehydroxyde de cobalt(III), hydroxyde de cobalt(II) et Co3O4) se situe entre 5 et 100 % en poids par rapport au
poids total des composés de cobalt, de préférence entre 25 et 100 % en poids, mieux encore
entre 50 et 95 % en poids, commodément un
procédé dans lequel les composés de cobalt
sont présents en quantité de 2 à 60 % en poids
sur la base du poids du cobalt métallique sur le
support ou le précurseur de support séché, de
préférence entre 10 et 40 % en poids, et dans
lequel le support ou le précurseur de support est
un oxyde réfractaire, de préférence la silice,
l’alumine, l’oxyde de zirconium, l’oxyde de titane
ou leurs mélanges, ou des précurseurs prévus
à cet effet.
11. Utilisation d’oxydehydroxyde de cobalt(III) dans un
procédé selon la revendication 10, dans lequel le
précurseur de catalyseur comprend un métal promoteur ou un composé métallique, le métal étant de
préférence choisi parmi le vanadium, le chrome, le
manganèse, le fer, le zirconium, le ruthénium, le rhénium et le platine, chaque métal promoteur étant de
préférence utilisé en quantité telle que le rapport atomique du cobalt au promoteur métallique soit de
1000:1 à 3:1, de préférence de 200:1 à 4:1, mieux
encore de 100:1 à 6:1, en particulier un procédé dans
lequel le métal promoteur est le manganèse, le rhénium ou le platine.
12. Utilisation d’oxydehydroxyde de cobalt(III) dans un
procédé selon la revendication 10 ou 11, dans lequel
l’oxydehydroxyde de cobalt(III) est utilisé ou un mélange d’oxydehydroxyde de cobalt(III) et d’hydroxyde de cobalt(II) et éventuellement de Co3O4 de préférence l’oxydehydroxyde de cobalt(III) ou le mélange tel que préparé dans l’une quelconque des revendications 1 à 11.
13. Utilisation d’oxydehydroxyde de cobalt(III) dans un
procédé selon l’une quelconque des revendications
10 à 12, dans lequel l’étape de mélange est une simple étape de mélange ou une étape de malaxage ou
de broyage.
5
10
15
20
25
30
35
40
45
50
55
9
16
EP 1 817 259 B1
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description
•
•
•
•
EP 398420
EP 178008
EP 167215
EP 168894
•
•
•
A [0004]
A [0004]
A [0004]
A [0004]
Non-patent literature cited in the description
•
Electrochemical Series. Handbook of Chemistry and
Physics. 8-20 [0010]
10
EP 363537 A [0004]
EP 498976 A [0004]
EP 71770 A [0004]