RECENT ADVANCES IN CAST SX SUPERALLOYS Jacqueline Wahl and Ken Harris ® Cannon-Muskegon® Corporation A PCC COMPANY 1 Background • Historically, significant advances in single crystal alloy performance were attained due to rhenium effects • Extensive application of 2nd generation (3% Re) alloys in the hot section of gas turbine engines • Consequently, 2nd generation SX superalloys serve as the benchmark for all subsequent SX alloy developments 2 New Alloy Developments • Due to high cost & limited availability of Re, market pull for improved SX superalloys with low or no Re compared to 3% Re alloys • Concurrently, demand for lower fuel burn & reduced CO2 emissions requires higher temperature capability beyond 2nd gen. SX alloys, targeting 3rd generation (6-7% Re) SX alloys • In response, CM has developed three new, proprietary SX superalloys: CMSX®-8 (1.5% Re) CMSX®-7 (no Re) CMSX-4® Plus (4.8% Re) 3 CMSX-8 Alloy Development Alloy Development Goals: • Excellent high temperature creep-rupture and LCF properties (targeting 2nd gen. alloy CMSX-4®) while maintaining • Oxidation properties/coating adherence • Castability • Phase Stability With significantly reduced Re content 4 CMSX-8 Nominal Chemistry Alloy Cr Co Mo Ta W Re Al Ti Hf Ni CMSX-3 8 5 0.6 6 8 -- 5.6 1.0 0.1 Bal CMSX-7 6 10 0.6 9 9 -- 5.7 0.8 0.2 Bal CMSX-8 5.4 10 0.6 8 8 1.5 5.7 0.7 0.2 Bal CMSX-4 6.5 9.6 0.6 6.5 6.4 3 5.6 1.0 0.1 Bal • Re, Ta, Mo, W – balanced for good creep-rupture properties (with low Re content) and acceptable phase stability • High Ta content for castability/freedom from freckling • Cr, Co – adjusted for phase stability • Al, Ti, Ta – target ~70% Vf γ’ phase • High Al, low Mo (Ti addition) + Hf addition – improved bare alloy oxidation/coating adherence • Density: 8.85 gms/cm3 • DSC Solidus: 1338°C, Liquidus: 1389°C 5 Rupture Life: CMSX-8 vs. CMSX-4 & Rene’ N5/Rene’ N515 6 Time to 1% Creep CMSX-8 vs. CMSX-4 7 CMSX-8 Elevated Temperature Stress-Rupture 8 CMSX-8 Post-test Microstructure Excellent phase stability/ negligible TCP phase formation following 4060 hours stress-rupture testing at 1121°C (2050°F) 9 Alloy Modifications • CMSX-8 [B/C] alloy • Modified chemistry w/optimized additions of C, B • Targeting improved low angle boundary (LAB) grain defect accommodation for difficult to cast (e.g., SX vane segments) and/or large industrial gas turbine components • Alloy property characterization shows creeprupture results consistent with standard CMSX-8 properties 10 Rupture Life CMSX-8 [B/C] vs. CMSX-4 & Rene’ N5/Rene’ N515 11 CMSX-8 [B/C] Defect Tolerance Defect tolerance assessed on transverse specimens machined across intentional LAB/HAB sefects in seeded bi-crystal slabs 12 CMSX-7 Alloy Development Alloy Development Goals: • Improved mechanical properties over existing non Re-bearing SX alloys Balanced with • Good solution heat treatment window • Castability • Phase Stability • Improved oxidation properties/coating adherence 13 CMSX-7 Nominal Chemistry Alloy Cr Co Mo Ta W Re Al Ti Hf Ni CMSX-3 8 5 0.6 6 8 -- 5.6 1.0 0.1 Bal CMSX-7 6 10 0.6 9 9 -- 5.7 0.8 0.2 Bal CMSX-8 5.4 10 0.6 8 8 1.5 5.7 0.7 0.2 Bal CMSX-4 6.5 9.6 0.6 6.5 6.4 3 5.6 1.0 0.1 Bal Ta, Mo, W – balanced for improved creep-rupture properties High Ta content for castability/freedom from freckling Cr, Co – adjusted for phase stability Al, Ti, Ta – target ~70% Vf γ’ phase High Al, low Mo (+ Ti) + Hf addition – improved bare alloy oxidation/coating adherence • Density: 8.8 gms/cm3 • DSC Solidus: 1325°C, Liquidus: 1381°C • • • • • 14 Rupture Life CMSX-7 vs. CMSX-2/3 15 Time to 1% Creep 16 Rupture Life CMSX-7 vs. CMSX-4 & Rene N5/Rene’ N515 17 CMSX-7 Post-test Microstructure Excellent phase stability/ minimal TCP phase formation following 1176 hours stress-rupture testing at 1093°C (2000°F) 18 CMSX-4® Plus Alloy Development Alloy Development Goals: • Improved high temperature properties over CMSX-4 alloy, approaching 3rd generation SX (6-7% Re) alloys, but better all round properties considering: • Improved solution heat treatment capability • No SRZ phase problems/coating compatibility issues • Improved oxidation/hot corrosion properties • Lower Re content, cost & density 19 CMSX-4® Plus Nominal Chemistry Alloy Cr Co Mo Ta W Cb (Nb) Re Al Ti Hf Ni CMSX-8 5.4 10 0.6 8 8 -- 1.5 5.7 0.7 0.2 Bal CMSX-4 6.5 9.6 0.6 6.5 6.4 -- 3 5.6 1.0 0.1 Bal CMSX-4 Plus 3.5 10 0.6 8 6 -- 4.8 5.7 0.85 0.1 Bal 2 3 0.4 8 5 0.1 6 5.7 0.2 0.03 Bal CMSX-10K • Re increased for improved creep-rupture properties, balanced against adverse effects of SRZ phase & TCP phase formation • High Ta content for castability/freedom from freckling • Cr - adjusted for phase stability • Ti increased for γ/γ’ mismatch & interfacial chemistry • High Al, low Mo (+ Ti) + Hf addition – improved bare alloy oxidation/coating adherence • Density: 8.927 gms/cm3 • DSC Solidus: 1351°C, Liquidus: 1406°C 20 CMSX-4 Plus Rupture Life Comparison (hours) Test Parameters CMSX-4 Plus CMSX-4 CMSX-8 517 MPa/913°C (75 ksi/1675°F) 216 52 67 248MPa/982°C (36 ksi/1800°F) 615 275 236 296 MPa/982°C (43 ksi/1800°F) 276 88 89 248 MPa/1010°C 36 ksi/1850°F) 227 82 85 190 MPa/1050°C (27.6 ksi/1922°F) 231 90 81 103 MPa/1121°C (15 ksi/2050°F) 662 640 293 21 Time to 1% & 2% Creep Test Parameters CMSX4 Plus CMSX-4 CMSX-8 1% creep 2% creep 1% creep 2% creep 1% 2% creep creep 248 MPa/982°C (36 ksi/1800°F) 374 416 125 160 116 296 MPa/982°C (43 ksi/1800°F) 171 248 MPa/1010°C (36 ksi/1850°F) 130 147 35 45 40 48 190 MPa/1050°C (27.6 ksi/1922°F) 118 138 37 54 34 43 45 136 39 22 CMSX-4 Plus Post-test Microstructure Excellent phase stability/minimal TCP phase formation following 1492 hours creep-rupture testing at 1050°C (1922°F) 23 Re Effect (A. Giamei SUPERALLOYS 2012) Suggests linear relationship with increasing Re 24 Re / Alloying Effects CMSX® …. 8% Ta Alloys 36.0 ksi/1800°F (001) (248 MPa/982°C) 500 450 CMSX-4® PLUS MOD C 400 Time to 2.0% Creep (hrs) 350 CMSX-4 PLUS MOD B 300 250 Suggests exponential relationship with increasing Re CMSX-4® PLUS MOD A 200 • [CMSX-4® (6.5% Ta) ] 150 CMSX®-8 100 50 0 1 2 Re wt % 3 4 5 6 CMSX-4 Plus vs. CMSX-10K Test Parameters Alloy Time to Rupture Time to 1% creep Time to 2% creep 248 MPa/982°C (36 ksi/1800°F) CMSX-4 Plus 615 374 416 CMSX-10K 718 390 459 103 MPa/1121°C (15 ksi/2050°F) CMSX-4 Plus 662 -- -- CMSX-10K 558 -- -- Alloy Density (RT) kg/dm3 AM1 8.59 CMSX-4 8.70 SC180 8.84 CMSX-4 Plus 8.927 PWA 1484 8.95 Rene’ N-6 8.97 CMSX-10K 9.05 (not density corrected) 26 CMSX-4 Plus Mod C performances under nonisothermal creep conditions J. Cormier Institut Pprime, UPR CNRS 3346, ENSMA 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil France 27 Webex ANR VISCANOPOL CMSX-4 Plus Mod C vs CMSX- 27 1. Materials and Specimen For CMSX-4 Plus Mod C: CM Std heat treatment (Solution + Agings) For CMSX-10K: RR Solution treatment + GFQ + Agings = 6h/1152 C/AQ + 24h/871 C/AQ + 30h/760 C/AQ For CMSX-4: CM recommended ST and aging heat treatments Mechanical polishing of the surface up to a SiC 4000 grade finish (longitudinal polishing) CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 2. Tests Creep under thermal cycling conditions under 120 MPa : 15 min/1050 C + 1 min/1100 C + 15 min/1050 C + 1 min/1150 C. -1 -1 Heating/cooling rates : 2 C.s /10 C.s respectively 1’/1150 C T (°C) 1’/1100 C 15’/1050 C 15’/1050 C Temps [Cormier et al. Phil. Mag. Let. 2010] CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 2/2. Creep under thermal cycling – CMSX-4 Plus Mod C vs other SXs 25 CMSX-4 CM1 CMSX-4 CM2 20 Creep strain (%) CMSX-4 CM3 CMSX-4 DB1 15 CMSX-10K K2 CMSX10K PCC1 10 CMSX10K PCC2 CMSX-4 Plus Mod C #1 5 CMSX-4 Plus Mod C #2 0 0 50 100 150 Time (h) CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 200 250 300 2/2. Creep under thermal cycling – CMSX-4 Plus Mod C vs other SXs CMSX-4 CM1 4,5 CMSX-4 CM2 CMSX-4 CM3 Creep strain (%) 3,5 CMSX-4 DB1 2,5 CMSX-10K K2 CMSX10K PCC1 1,5 CMSX10K PCC2 CMSX-4 Plus Mod C #1 0,5 CMSX-4 Plus Mod C #2 0 5 10 15 20 25 30 -0,5 Time (h) CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 35 40 45 50 3. Microstructure observations (’ in dark) CMSX-4 Plus Mod C CMSX-10K General aspect CMSX-4 5 mm away from the failur surface 1 mm away from the failur surface A higher ’ volume fraction for CMSX-10K and CMSX-4 Plus Mod C compared to CMSX-4 (in agreement with the ’ solvus temperature) CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 7 2/5. Non isothermal creep performance (Number of thermal cycles up to failure) 1000 Mar-M200 René N4 MC2 Y scale logarithmic AM3 AM1 Cycles to failure 100 René N5 CMSX-4 CMSX-10K MCNG CMSX-4 Plus Mod C 10 Very high temperature non-isothermal creep properties controlled by the ’ solvus temperature 1 1190 1210 1230 1250 1270 1290 ' solvus temperature (°C) CMSX-4 Plus Mod C vs CMSX-10K vs CMSX-4 1310 1330 1350 1370 Summary/Conclusions • Single crystal alloy requirements for new engine applications take into consideration both operating conditions and market economy • Newly developed SX superalloys offer improved properties at reduced Re content: – CMSX-8 similar to CMSX-4 to at least 1010°C (1850°F) – CMSX-7 exceeds CMSX-2/3 to ~ 1038°C (1900°F) & similar to Rene’ N5/Rene’ N515 published data – CMSX-4 Plus approaches CMSX-10K properties • These alloys demonstrate improved capability developed with ~35 years of SX alloy/casting industrial experience 34
© Copyright 2026 Paperzz