University of Dayton eCommons Geology Faculty Publications Department of Geology 2-1993 The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada Allen J. McGrew University of Dayton, [email protected] Follow this and additional works at: http://ecommons.udayton.edu/geo_fac_pub Part of the Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Glaciology Commons, Hydrology Commons, Other Environmental Sciences Commons, Paleontology Commons, Sedimentology Commons, Soil Science Commons, Stratigraphy Commons, and the Tectonics and Structure Commons eCommons Citation McGrew, Allen J., "The Origin and Evolution of the Southern Snake Range Decollement, East Central Nevada" (1993). Geology Faculty Publications. Paper 29. http://ecommons.udayton.edu/geo_fac_pub/29 This Article is brought to you for free and open access by the Department of Geology at eCommons. It has been accepted for inclusion in Geology Faculty Publications by an authorized administrator of eCommons. For more information, please contact [email protected], [email protected]. TECTONICS, THE ORIGIN AND THE SOUTHERN DECOLLEMENT, VOL. 12, NO. 1, PAGES 21-34, FEBRUARY 1993 EVOLUTION SNAKE OF RANGE EAST CENTRAL NEVADA AllenJ. McGrew1 Departmentof Geology,StanfordUniversity,Stanford, California Abstract.Regionalandlocalstratigraphic, metamorphic, andstructuralconstraints permitreconstruction of the southern SnakeRangeextensional deformational system in eastcentral Nevada.Thedominant structure of therange,the southern SnakeRangedtcollement (SSRD),operated during Oligoceneand Mioceneextensionaldeformationto exhumea footwallof multiplydeformed metasedimentary and plutonicrocks.Intrusionof threeplutons(~160Ma, 79.1+ 0.5 Ma, and36+ 1 Ma, respectively) anddevelopment of two cleavages precededtheonsetof extensional deformation. Plasticdeformation of lowerplatemetasedimentary rocks accompanied theearlyphases of regionalextension and produced bedding-parallel grainshapefoliationsandWNW trending stretching lineations.Thesefabricsparallelthe SSRDevenin low-strain domains, suggesting thata significant component of pureshear strainprobably accompanied noncoaxialdeformationassociated with motion on the SSRD, consistentwith otherlines of evidence. Meanwhile, hanging wallrocksweregreatlyextended by at leasttwogenerations of tilt block-style normalfaultssoling into the SSRD, with the earlier faults antitheticto the SSRD andthelaterfaultsdippingin thesamedirectionastheSSRD. A retrodeformed regionalcross-section sequence illustrates plausible alternative schemes for reconstructing thesouthern SnakeRangeextensional system.In onescheme, theSSRD formsasa crustal scalestretching shearzoneseparating an upperplatethatextendsonsteeplyinclinednormalfaults froma lowerplatethatstretches by penetrative flow. In the other,lowerplatedeformation incorporates a component of coaxialstretching, buttheSSRDalsofunctionsasa conventional shearzoneaccommodating through-going displacement betweenopposing plates. In eithercase,astectonic unroofmg proceeds, differential isostatic unloading induces theSSRDto rotateto steeper dipsasit migrates intothe frictionalslidingregime,thusenablingit to remainactiveasa brittlenormalfaultuntilit finallyrotatesto its present shallowinclination.In eitherscenario,cross-section constraints suggest thattotalextension accommodated by the SSRDwasprobablybetween8 km and24 km. 1NowatGeologisches Institut, Eidgen'tssische Technische HochschuleZ'tkich (The SwissFederalInstituteof Technologyat Zftrich),Zftrich,Switzerland. Copyright1993 by the AmericanGeophysical Union. Paper number92TC01713. 0278-7407/93/92TC-01713510.00 INTRODUCTION Theorigin,kinematicsignificance andgeometrical evolutionof shallowlyinclinednormalfault systems are fundamental issuesin extensional tectonics.Regionally extensivefaultsthatjuxtaposenonmetamorphic sedimentary rocksin theirhangingwallsagainstplasticallydeformed crystallinerocksin their footwallscommandspecial attentionbecausethey offer rare opportunities to characterize kinematiclinkagesbetweencontrasting structurallevels. Thesefaults,commonlyknownasdetachment faults,are the subjects of muchcontroversy.Thispaperpresents newdata bearingon thenatureandoriginof onesuchfault,the southernSnakeRangedtcollement(SSRD) of eastcentral Nevada[Misch,1960;Whitebread,1969]. Currently,debate onthenatureandoriginof detachments focuseson a few criticalquestions suchas thoseoutlinedbelow. Whatmagnitudes of displacement typifyoffsetsacross detachment faults? Becausedetachment faultstypically juxtaposedistinctlydifferentstructurallevels,it is commonlydifficult or impossibleto identifythe piercing pointsor cutoffsnecessary to constraindisplacements, althoughseveralstudiesreportrelationships thatseemto requiretensof kilometersof offset[e.g.,Stewart,1983; Reynolds andSpencer,1985,DavisandLister,1988;Wernicke et al., 1988]. Occasionally thiscircumstance givesriseto radicallydifferentestimatesof displacement for the same faultsystem,asin thecaseof thenorthernSnakeRange dtco!!ement(NSRD) wherepublishedestimates of displacement varyfrom lessthana few kilometers[Gansand Miller, 1983; Miller et al., 1983; Gans and Miller, 1985] to approximately 60 km [BartleyandWernicke,1984;Wernicke andBartley,1985]. Because theSSRDmayoriginallyhave beenlaterallycontinuous with the NSRD, the retrodeformed cross-section presented heremaybe relevantto theabove controversy. Whatfundamentalkinematicfunctiondo detachment faultsplay in accommodating lithospheric extension ? One popularviewpointholdsthatdetachments represent discrete, through-going crustalshearzones[e.g.,Wernicke,1981; Davis,1983],whileothersseedetachments ascomponents in anastomosing shearzonenetworks[e.g.,Kligfield et al., 1984; Hamilton,1987]or asregionallydeveloped decoupling zones betweentheseismogenic uppercrustanddeeperstructural levelswherepenetrativestretchingandplutonemplacement accommodate extension[e.g.,Eaton, 1982;Miller et al., 1983; Ganset al., 1985;Gans,1987]. In maycase,because such modelspredictcontrastingstrainpatternsanddeformational histories, observations in thesouthernSnakeRangeprovide importanttestsof the viability of someof the competing interpretations. How doesthe inclinationof detachment faults vary during the kinematicevolutionof extensional systems ? A particularly importantissuein the debatesurrounding detachment faultsconcerns whethertheyformedandwereseismically activeat thedipsat whichtheyarenow observed, or whether theysubsequently rotatedto theircontemporary shallow inclinations (for example,Wemicke[ 1981]versusJackson andMcKenzie[1983]). Additionally,in recentyearsso-called 22 McGrew:Originof SouthernSnakeRangeDtcollement,Nevada "roUinghingemodels"haveintroduced a newperspective on thegeometrical evolutionof normalfaultsystems[e.g., Wernickeand Axen, 1988; Buck, 1988]. For instance,in the WemickeandAxenmodel,detachment systems formasaseismic, shallowlyinclinedplasticshearzonesin themiddle crustandrotateto steeperdipsas the footwallis upliftedin response to negativeisostaticloadingdueto tectonicunroofing. Consequently, thedetachment cancontinueto functionas a steeplyinclinedseismogenic normalfault until thehingeline of isostaticflexuremigratesthrougha givenfault segmentrotatingthat segmentbackto shallowdip. As in mostdetachment systems,the rotationalhistoryof the SSRD is particularlydifficult to constrain,but it is possibleto evaluatethe geometricalviability of alternative interpretations. GEOLOGIC SETTING Situatedin eastcentralNevada(Figtire1), thesouthern SnakeRange(siteof GreatBasinNationalPark)wasmapped previously at a scaleof 1:48,000by Whitebread([1969]. In addition,plutonitrocksin theareahavebeenextensively o,, •.o.•,oo KM investigated, andabundant K-At, Rb-Sr,andU-Pbagedataare available [Leeetal., 1968,1970,1981,1982,1984,1986a, 1986b;LeeandVanLoenen,1971;LeeandChristiansen, 1983a,b; Milleret al., 1988].Forthisstudy,thestmcturally complex northeastern flankof therangewasre-mapped ata scaleof 1:24,000 by theauthorandby the1984Stanford Geological Surveyledby E. L. Miller (mapreproduced hereat a scaleof 1:48,000,Plate 1). Located in the hinterland of the Late Cretaceous Sevier orogenic belt,thesouthern SnakeRangeexposes a broad, northtrending anticlinorium bounded to thewestby the Buttesynclinorium andto theeastby theMesozoic-aged Confusion Rangestructural trough(CRST,exposed in the Burbank Hills;Figure1). Thesouthern SnakeRange dtcollement(SSRD) formsthe dominantstructuralfeattire of therangeanddips10ø-15 øeastward beneath southern Snake Valley,a narrow(8 km wide)basinthatseparates the southern SnakeRangefromtherelativelysimplestructure andwell-lmownstratigraphy of theBurbankHills to theeast [Hintze,1960;Anderson, 1983]. Theupperplateof theSSRD exposes a severelyattenuated, normal-fault-bounded mosaic of variousnonmetamorphic to slightlyrecrystallized NEVADA BASIN LT LAKE CITY AND RANGE INSET PROVINCE COLORADO PLATEAU Fig. 1. Localitymapshowingthestudyarearelativeto someimportantMesozoicstructuraltrends:the Sevierorogenicbelt,theButtesynclinorium, andtheConfusionRangestructural trough(CRST). In partitular,notetheapparent deflection of theButtesyuclinorium relativeto theCRST,probablyasa result of Cenozoic extension. McGrew: Originof Southern SnakeRangeD6collement, Nevada 23 sedimentary rocks,includingfragments of a thick,carbonatedominated miogeoclinal sequence andoverlyingtuffaceous Tertiarymarlsandconglomerates (Plate1). By contrast, the lowerplateof theSSRDexposes a thick,stratifiedsequence of Late Proterozoicto Middle Cambrianquartzitesand schists overlainby a thinhorizonof whitemarblemylonite. Intrudingthissequence arethreewell-datedplutonsof Late Jurassic, Late Cretaceous, andearlyOligoceneage, respectively. Relationships betweentheseplutonsand countryrockare criticalin establishing thechronology of deformational andmetamorphic eventsin thestudyarea(see below). Lower platequartzitesin the easternpartof the map areawerestrainedandrecrystallizedduringTertiary deformation,but relict sedimentaryfeaturesincludingcross bedding,rareconglomeratic horizons,andprimary compositional layeringarepreserved.Grainshapefoliationin theserocksis orientedperceptiblyparallelto beddingandto theSSRD,andmeanmineralelongationlineation(Le) is orientedapproximately 105ø,3ø (Plate1 andFigure2a). Finally,the SSRD,lowerplatebedding,andlowerplate foliationare all gentlyfoldedaboutan axisoriented approximately 102ø, 6ø, essentially parallelto grainshape lineation(Figure2a). In manyrespectsthe structuralframeworkoutlinedabove resemblesthat of the northernSnakeRange[Miller et al., 1983; Gansand Miller, 1983; J. Lee et al., 1987], but the rank of peakmetamorphism andtheextentandintensityof mylonitic deformationaremuchlower in thesouthernSnakeRange thanto the north. AlthoughMiller et al. [1983] suggested thattheNSRD andSSRD areunrelatedstructures, subsequent mappingindicatesthatyoungerfaultingin the Sacramento Passareabetweenthetwo rangesobscures thestructuralrelationshipbetweenthetwo surfaces, andtheymayoncehave beenlaterallycontinuous (E. L. Miller, personalcommunication, 1986).Consequently,comparison of thesetwo ranges may offer importantinsightsinto theoriginof a regionally importantlow anglestructure. PRE-EXTENSIONAL TECTONIC HISTORY In the easternpartof themap area,Tertiaryextensional deformationlargely obscuresthe earlierdeformational history,but in the westernpart of the studyareapreextensional fabricrelationships are well preserved.The oldestdeformational fabricin thesouthernSnakeRangeis a penetrativecleavage(S1) thatis gentlyinclinedwith respect to beddingand formsa northtrendingintersection lineation (L0xl). Andalusiteandpseudomorphosed staurolite porphyroblasts in the contactaureoleof the SnakeCreekWilliamsCanyonplutonoverprintthis cleavage,and hornfelstextureslocallyobliterateit. Datingof this zoned tonaliticto graniticplutonby U-Pb zircon,K-Ar hornblende, K-Ar muscovite,andRb-Srmethodsnarrowlyconstrains its ageat approximately160Ma (Figure3) [Leeet al., 1968, 1970, 1981, 1986b]. Consequently, formationof theS1 cleavagemustat leastslightlypredate160 Ma, although Miller et al. [ 1988]suggestthat S1 deformationbroadly coincidedwith plutonemplacement.Metamorphicgradein Fig.2. Stereoplots of selected structural datafromthesouthernSnake Range(Schmid equal-area net,lower-hemisphere projection). (a)Grainshape lineations (solidcircles, N=94) withmeanlineationvectorindicated by opencircle(105ø,3ø); polesto grainshape foliation(crosses, N=162)withmean orientationindicated(soliddiamond),andwith bestfit great circleandpoletobestfit greatcircleplotted(opendiamond, 102ø,6ø);andpolesto SSRD(opensquares, N=14). (b) L0x2 intersectionlineation(solid circles,N=22) with mean lineation vectorindicated by opencircle(301ø,5ø);andpoles to S2crenulation cleavage (crosses, N=21) withbestfit great circleandpoleto bestfit greatcircleplotted(soliddiamond, 302%15ø). the contactaureoleof the SnakeCreek-WilliamsCanyon plutonincreases from greenschist faciesto amphibolite facies overa distance of approximately 1.5km,representing thepeak metamorphic gradeattainedin themaparea(Figure3). 24 McGrew:Originof Southern SnakeRangeD6collement, Nevada •++++ .,. \+ + + ++++ •- / I I++ + McGrew:Originof SouthernSnakeRangeD6collement,Nevada OverprimingthepenetrativeS1 cleavagedescribed aboveis a weak,sporadically occurringS2 crenulation fabric. L0x2 intersection lineationtrendsconsistently northwestward throughout themaparea,butbeddingto cleavageanglesand dip directions of S2vary,suggesting subsequent fanningabout an axisorientedapproximately 301ø, 5ø (Figure2b). At thin sectionscale,theS2cleavagecutsandrotateschloriteporphyroblaststhatgrewduringthe 160 Ma metamorphic event, thusplacingan upperboundontheageof deformation.In contrast,andalusiteporphyroblasts that grew in the contact aureoleof the 36 Ma YoungCanyon-Kious Basinpluton(see below)staticallyoverprintandthereforepostdatethe S2 cleavage.Accordingly, thetimingof S2deformation is only broadlybracketedbetween160 Ma and36 Ma in the southern SnakeRange;however,Miller et al. [1988]suggest on the basisof regionalrelationships thatS2 fabricdevelopment probablycoincidedbroadlywith Cretaceous plutonism. Consequently, a 79.1+ 0.5 Ma Rb-Srwholerockisochron and a 79.7 Ma K-At muscoviteagefor thePoleCanyon-Can YoungCanyonplutonin the northcentralpart of the map areamaygivethebestestimatefor theageof S2cleavage development [Leeet al., 1970, 1986a](Figure3). In contrast to theLateJurassic andOligoceneplutons,thisdistinctive muscovite phenocrystic two-micagraniteproducedminimal contactmetamorphiceffects,includingsericitizationof Jurassic-aged andalusite porphyroblasts andgrowthof new 25 linesof evidenceindicateanOligoceneto Mioceneagefor the SSRD. Most significantly,the SSRD eithercutsor merges with upperplatenormalfaultsthat themselvescut and offset Tertiary-aged strata,including29.5-30.6Ma tuffsof the NeedlesRangeGroup[Armstrong,1972;BestandGrant, 1987].In addition,involvement of the36 Ma YoungCanyonKiousBasinplutonin deformationthatappearsto be associated withactivityon the SSRDplacesanupperbracket on the ageof footwallstrain(seediscussion of lower plate strain below). In additionto the abovelinesof evidence,the southern SnakeRangeexhibitsa monotonicdecreasein K-At muscovite agesfrom 79 Ma in thewesternpartof the PoleCanyon-Can YoungCanyonplutonto a minimumof 17 Ma immediately beneaththeSSRDin theYoungCanyon-Kious Basinpluton (Figure3) [Leeet al., 1970]. The youngest K-At muscovite agesoriginatefrom cataclastically deformedand hydrothermally alteredpartsof the mainphaseof the Tertiarygranite[Leeet al., 1970,1984],and anomalously low 8180and8Dvalues fromthesamples yielding theyoungest K-Ar agessuggestthathydrothermal whitemicaratherthan primarymuscovite wasdated[Leeet al., 1984]. Consequently, theanomalously youngK-Ar ageswithintheTertiarygranite probablyrecordmineralgrowthand/orArgonlossassociated with hydrothermal activitythatmayhaveaccompanied the latestagesof movementon the SSRD. chlorite in the immediate contact aureole. Thefinalstageof plutonism in thesouthern SnakeRange involvedemplacement of theYoungCanyon-Kious Basin plutonin thenortheastern partof themaparea(Plate1). A 36 + 1 Ma U-Pb zirconage[Miller et al., 1988]anda 37.4 + 1.5Ma Rb-Srwholerockisochron[Leeet al., 1986b]constrain the ageof thisintrusion(Figure3). Garnet,poikiloblastic andalusite, andbiotiteaggregates formingpseudomorphs afterearlierchloriteporphyroblasts characterize peak metamorphism in the immediatecontactaureoleof this pluton,and,asnotedabove,theseassemblages statically overprintearlierdeformationalfabrics. In contrastto the relativelypristineolderplutonsto thewest,themainphase of theYoungCanyon-Kious Basinplutonis ratherseverely deformedandhydrothermally alteredin the footwallof the SSRD(seediscussion of lowerplatestrainbelow). Lee and Van Loenen[1971]mappeda fault contactbetweenthe severelydeformedmainphaseanda muchlessdeformed "aplitic"phaseexposedon the northwestern sideof Kious Basin,butmapping conducted for thisstudyindicates that boththemagnitude of deformation andthemineralogy of the plutonchangegradationally acrossa narrowtransitionzone (Plate 1) [McGrew, 1986]. EXTENSIONAL TECTONISM Overprintingandlocallyobscuringthe earlier deformational historyoutlinedaboveis themajor extensional deformational eventthat is largelyresponsible for the present-daystructuralconfigurationof the southern SnakeRange,includingthemostprominentstructureof the range,thesouthernSnakeRanged6collement(SSRD). Several Characterof Lower Plate Strain TheSSRDis wellexposed in theeastern partof themap areawhereit typicallyoverliesa thin horizonof white marblemylonitethataccommodated unquantified but potentiallylargeshearstrains.Beneaththemarblemylonite liesa thicksequence of lessintensely strained andmostly nonmylonitic quartzites andsubsidiary schistscharacterized by beddingparallelgrainshapefoliationsandwell-developed stretching lineationsorientedapproximately 105ø, 3ø, parallelto similarlineations in thenorthernSnakeRange thatareOligoceneto earlyMiocenein age(Figure2a) [Lee andSutter,1991]. Towardthewestthesegrainshapefabrics graduallygiveway to ESE trendingslickenlineations on beddingsurfaces, andthedegreeof transposition of older fabricsdiminishes suchthatS1 andLlx0 (a northtrending intersection lineafion)areincreasingly preserved.In theeast theseolderfabricsarepreserved primarilyby inclusiontrails in ESE rotatedchloriteporphyroblasts that grewprior to the f'malstageof deformation(Figure4a). The ageof thefinal stageof lowerplatestrainis constrainedprimarilyby the deformationof the 36 Ma Young Canyon-Kious Basinpluton.Distributedcataclastic deformation alonga complexsystemof small-scaleshearsurfaces accomodates mostof the strainwithin the 36 Ma pluton,but mylonificfabricsandsolidstatefoliationsoccurlocally within the outcropareaof thisgranite,andin somelocalities intrusiveapophyses intothedeformedcountryrockcarrythe sameWNW trendinggrainshapelineationthatcharacterizes surrounding quartzites.In thin section,the deformed Tertiarygranitestypicallyshowgreenschist faciesmineral assemblages includingchlorite,secondary epidote,and Fig.4. (a)ESE-lineated mylonitic chlorite schist froinSnake Creek window showing sigmoidal chlorite porphyroblasts thatgrew during earlier metamorphism andwere subsequently rotated inanapparent topto-the-east sense (dextral inthisphotograph) during Oligocene deformation (plane light). (b)Plastically deformed Tertiary granite (note sutured, polygonized, anddynamically recrystallized quartz; seetextfor additional discussion) (crossed nicols). (c)Intensely conuninuted zone incataclastically deformed Tertiary granite (contrast withFigure 4b;seetextforadditional discussion) (crossed nicols). McGrew:Originof SouthernSnakeRangeDtcollement,Nevada secondary whitemica.In addition,quartzcommonlyshows extensivesubgraindevelopmentandsuturedgrainboundaries (Figures4b and4c). Finally,thinzonesof intensely comminutedandcataclasized rock frequentlycut earlier plasticfabrics,implyinga plasticto brittle evolutionsimilar to that of many otherCordilleranmetamorphiccore complexes(Figure 4c). These abundant small-scale cataclastic zones form a complicated kinematicsystem,with mostshearsurfaces strikingapproximatelynorthwardand mostslickenlineationsorientednearlyparallelto dip, yieldinga mean motionplaneorientedapproximately80ø, 77ø (Figure5; the motionplaneis definedastheplanecontainingslickenlineationandthe theshearsurfacenormal). Wherestepped slickensurfaces preservea clearsenseof offset,normal-sense displacement appearsto predominate, suggesting an ENE trendingextensiondirectionthat contrastssomewhatwith theaverageslip line indicatedby theorientation of Le in surrounding quartzites(105%3ø). Consequently, the extension directionmayhavevariedby asmuchas30øduring thecourseof the extensional history. Approximately65% of shearsurfacesin the granitedip towardthe eastwhile the remainderdip westward,suggesting thatthe bulk deformationpathmayhaveincorporated a significantcomponent of puresheardeformation aswell asa component of east directednoncoaxial strain(an inferencereinforced by relationshipsdescribedbelow). In orderto evaluatealternativeinterpretations of the kinematichistoryof the SSRD,it is particularlyimportantto 45 27 - 120 40 I lOO 35 30 80 25 l• R 60 15 R 40 5 0 1 2 3 4 5 6 7 8 9 10 Fig. 6. Plot of foliationto shearzoneangle(0') as a function of shearstrain(¾)and ellipticityof the strainellipse(R) for thecaseof endmembersimpleshearstrain[cf. Kligfield and others,1983]. Measuredfinite strainsin the lower plateof thesouthernSnakeRangeshowvaluesof R < 5 (seeFigure3), andevendirectlybeneaththeSouthernSnakeRangedtcollement (SSRD) thin sectionobservationson deformed quartzitessuggestthat finite strainsprobablydid not appreciably exceedthisvalue. Consequently, strainsin the southern SnakeRangewereprobablytoolow to giveriseto the observedparallelismbetweenfoliationandthe SSRD by strictsimpleshearstrainalone. A modestcomponentof pure shear strain in addition to the noncoaxial strains that undoubtedly affectedlowerplaterockscouldgive riseto the observed fabric relations. constrain thestrainpathcharacterizing deformation of lower platerocks.Asnotedpreviously, themylonitic marbles immediately subjacent totheSSRDprobably record significantamounts of noncoaxial strain,andsporadically occurring myloniticschists at depthsasgreatas 100m beneath the SSRDexhibit porphyroclast asymmetries thatmayrecord ESEdirected shear (Figure4a). However, despite theevidence forESEdirected noncoaxial strains notedabove, deformational fabricrelationships andquartzc axisfabric datafromlowerplaterockssuggest thatthedeformation pathprobably deviated significantly fromendmember simple shearstrain. Particularlyimportantis theobservation that bedding anddeformational fabrics areoriented perceptibly parallelto theSSRDthroughout thelowerplate.A simple shearstraininterpretation canexplaintheobserved Fig. 5. Stereoplot of polesto motionplanesfor shearsurfaces in deformed Tertiarygranite[MarshakandMitra, 1988]. Senseof displacement onshearsurfaces is oftenuncertain, so polesarenotplottedasdirectedlinesegments, butnormalsensedisplacement characterizes mostsurfaceswheresenseof slipcanbedetermined. Approximately 65% of shearsurfaces dipeastward, and35% dipwestward.Greatcircleindicates orientation of meanmotionplane.N--38. parallelism between foliation andtheSSRDonlyif shear strains aresystematically highthroughout thelowerplate (Figure6). In relativelylow straindomains, foliation(and possibly bedding) should beinclined atdiscernible angles to theshear zoneboundary unless a component ofpureshear strain issuperimposed. Bycontrast, coaxial strains operating beneath a shallowlyinclinedshearzoneshouldresultin foliations paralleling theshearzoneboundary evenin lowstraindomains.Consequently, thepersistent parallelism 28 McGrew:Originof SouthernSnakeRangeD6collement, Nevada betweengrainshapefabrics,bedding, andtheSSRDevenat 1). The line of sectionshownin Plate 2 minimizesthe need relativelydeepstructural levelswheretherocksareneither mylonificnorstrongly strained arguesagainata strictsimple for projectionfromoutsidetheplaneof sectionand represents a compromise betweenthesliplinessuggested by shearstrainoriginfor lowerplatedeformational fabrics. Unfortunately, the finitestrainvaluesneededto quantify tiffsargument aredifficultto constrain in thesouthern Snake Range.Nevertheless, thinningof theCambrian Pioche Formation(Cpi) from approximately 120 m in the less deformednorthwestern partof the rangeto 80-90 m directly beneath theSSRDsuggests thepossibility of 25-33%tectonic thinningof lowerplateunitsin themaparea(althoughit shouldbe notedthat initial stratigraphic variationscould the various criteria outlined above. While the lack of a also accountfor some or all of this thicknessvariation; Stanford GeologicalSurvey,unpublished data,1982and 1984). A morerigorousestimateof finite strainin the lower plateis providedby Rf-{' analysisof rareconglomeratic horizonsfoundin quartzitesnorthof the Cretaceous pluton, yieldingfinitestrainvaluesof 3.1 ß1.0' 0.7 and2.4' 1.0' 0.7 corresponding to k valuesof 5.25and3.5,respectively (placingthemwell within the field of apparent consfrictional strainon a Flinn diagram)[RamsayandHuber, 1983](Figure3). Withoutmoreextensivedata,it is impossible to evaluatewhetherthesestrainvaluestruly recordregionalconstrictional strainor whethertheymerely reflectlocalperturbations in the boundaryconditionsof plasticflow nearthe moreresistantCretaceous pluton. In anycase,despite thenonmylonitic character andrelatively low strainsof theserocks,the XY planeof the strainellipsoid parallelsbeddingasdoesfoliationthroughout themap area,suggesting a significaatcomponent of pureshearstrain parallelto lowerplatebeddingasdiscussed above(Figure6). Thisinferenceaccordswell with the generallackof compositefabricsandotherasymmetric microstinctures in metamorphic tectonites at depthbeneaththeSSRD. In addition,quartzc-axisfabricsfrombeneaththeSSRDgenerally showwell developed crossed girdlepatternswithveryweak, ESEdirectedsenses of asymmetry, suggesting thata significant component of pureshearstrainaccompanied ESE directednoncoaxialdeformation [McGrew, 1986]. Cross-section Construction and Restoran'on Plate 2 presentsa sequentialcross-section reconstruction illustratingtwo contrastingscenariosfor the large-scale geometrical evolutionof thesouthernSnakeRangeextensionalsystem.The choiceof an appropriate lineof section presentsan immediateproblemin cross-section construction asseverallinesof evidencesuggest thattheslipline maynot havebeenconstantthroughout deformation.As notedpreviously,the slip line impliedby the orientationof lowerplate stretching lineation(meanLe -- 105%3ø;Figure2) differs fromthatimpliedby motionplaneanalysisof cataclastic shearsurfaces in theTertiarygranite(meanmotionplane-80%77ø;Figure5). In addition,upperplatenormalfaults definetwoseparable generations characterized by opposing dipsand slightlydifferentstrikeorientations, with the earliergeneration of westdippingfaultsgenerallystriking 155ø - 160ø whilethe later,east-dipping faultsusuallystrike approximately N-S (seeWhitebread[1969]aswell asPlate consistent sliplineintroduces a degreeof uncertainty to cross-section restoration, thisuncertainty is probably relativelysmallcomparedwith someof theuncertainties discussed below. In thesections thatfollowI detailthekey constraints andassumptions incorporated into the construction of Plate 2. Pre-extensional structuralgeometry. Severalobservations suggestthat prior to the onsetof extensionaldeformationthe southern SnakeRangeprobablyresembled theBurbankHills a few kilometers to theeast,i.e., gentlyfolded,butlacking severestructuraldisruptionor profoundduplicationof section at the structurallevelsnow exposed. 1. No significant older-on-younger faultrelationships occuranywhere in thesouthern SnakeRange. 2. Andalusite-bearing metamorphic assemblages in the contactaureoles of MesozoicandTertiaryplutonsare compatiblewith stratigraphic reconstruction of the miogeoclinaloverburdenbut seemdifficult to reconcilewith wholesaleduplication of theuppercrust,at leastat structural levelsabovethesouthern SnakeRange. 3. Despitestrikingcontrasts in deformational style,no evidenceexiststo demonstrate profoundomissionof either stratigraphic sectionor metamorphic gradeacrosstheSSRD. 4. As emphasized firstby Armstrong [1972]andlaterby GansandMiller [1983]pre-extensional Tertiaryrocks throughout eastcentralNevadaareeverywhere deposited withminorangulardiscordance onupperPaleozoic or youngerrocks. 5. As illustrated in Plate2, upperplatefaultgeometries canbe restoredwithoutinvokingseverepre-extensional structuraldisruption. However,it shouldbe notedthat the extentto whichthe abovearguments applytosurrounding areassuchasthenorth- emSnake Range isanissue ofcontinuing controversy [Bartley andWemicke,1984;GansandMiller,1985;Wernicke and Bartley,1985;Lewisetal., 1992].Furthermore, noneof these pointsbearonthepossibility thatMesozoic thrustfaults mayexistbeneath thedeepest levelsexposed in thesouthern SnakeRange.In fact,theoccurrence of Mesozoicdeforma- tionalfabrics in thelowerplatesuggests increasing structural involvement at depth,bothin thesouthern Snake Rangeandin surrounding areas[Milleret al., 1988]. Geometrical evolution oftheSSRD.Aswithother major detachment faults,constraining theinclination of theSSRD through timepresents a particularly challenging and important problem incross-section construction. Atpresent, theSSRDdips<15øeastward throughout thesouthern Snake Range, butrequiring theSSRDtomaintain such dips throughout itshistorywouldgiveriseto serious mechanical problems andincongruency withnumerous observations on thecharacter of active normal-fault seismicity throughout theworld[Jackson, 1987].Angular relationships withlower platestrata provide someconstraints onpossible initial orientations of theSSRD.Throughout theeastern halfof the range theSSRDparallels lowerplateunits, andregional McGrew: OriginofSouthern Snake Range D6collement, Nevada reflection seismicdatasuggest thatthispatterncontinues towardtheeast,withtheSnakeRanged•collement parallel- ingthewestern limboftheCRST(COCORP UtahLine1) [Allmendinger etal.,1983]. Because regional stratal dips probably didnotexceed 200-30 øattheonset ofextension (see above), thissegment of theSSRDprobably couldnothave originated withsteepdips. Nevertheless, mapping byWhitebread [1969]indicates that towardthewesttheSSRDcutsup-section across footwall stratawithanangular discordance of approximately 30ø, thus opening thepossibility thattheSSRDmayoriginally have steepened toward thewestasshown inPlate2. Therotation ofthissegment of theSSRDtoshallower dipcouldoccur either byrotation in thehanging walloftheSchell Creek fault severalkilometerstOthe west [Ganset al., 1985] or because of isostatic adjustments accompanying deformation [Buck, 1988,Wernicke andAxen,1988].Bycontrast, asimilar isostaticmechanismcouldserveto rotatethe initially shallowly dipping segment oftheSSRDfirsttosteeper angle andthenbackto shallowdipastheinflectionpointof isostatic upliftmigrates through theregionof interest [cf. Spencer, 1984;Wernicke andAxen,1988]. Therolethatisostasy mayhaveplayedin thetectonic evolutionof the SSRD is difficultto evaluatefroman empirical pointofviewbecause absolute variations inelevation ofthe Earth's surface duringthecourse of orogenesis are notoriously difficulttoconstrain [England andMolnar, 1990].However, boththeTertiary unconformity data referred topreviously [Gans andMiller,1983]andthe palinspastic reconstruction shown inPlate 2 require thatthe CambrianPiocheFormationwasburiedto paleodepths in excessof 6 km beneaththe Earth'ssurfaceat the onsetof Tertiaryextension. At present, thissameformation is exposed atthecrestof thesouthern Snake Range, atleast6 km aboveitscontemporary position beneath boththeBurbank Hills to theeastandthesouthernSchellCreekRangeto the west(Plate2) [HoseandBlake,1976].Mesozoic folding probably accommodated onlypartof thisdifferential uplift, withtheremainderoccurring duringTertiaryexhumation, mostlikelyasa resultof isostatic adjustments. In anycase, reconstruction of Plate2 withoutanyuplift of lowerplate rocksin thesouthern SnakeRangerelativeto surrounding areaswouldresultin a retrodeformed sectionshowing> 4 km of verticalrelief over a lateraldistanceof < 5 km. For these reasons, Plate2 assumes thatspaceproblems between the hangingwall andthefootwallof theSSRDwereaccommodatedin partby footwallupliftaswellasby hanging wall collapse [cfiWernickeandAxen,1988]. Geometry of upperplatefaults. In thesouthern Snake Range,restoration of complicated upperplatefault geometries posesanother challenging problem.Map relationships in thesouthern SnakeRangeimplytwofamilies of upperplatefaults,anoldergeneration of relatively closely spaced, westdippingfaultsanda younger generation of more widelyspaced, eastdipping faults.Although theeastdipping faultsdonotclearlycutthewestdippingfaultsin theareaof Plate1, suchcrosscuttingrelationships areexposed h• adjacent areas mapped byWhitebread [1969]tothesouth. Because of a lackof exposed cutoffs,reconstruction of upper 29 platefaultsreliesentirelyon restoration of upperplatefault blocksto inferredpre-extensional stratigraphic positions. Fortunately, involvement of a well-knownpre-extensional stratigraphy facilitatesthismodeof reconstruction. The involvementof a well-knownstratifiedsequencealso placesimportantconstraints on regionalfaultreconstruction. Specifically, theMiddleCambrianPoleCanyonlimestone (Cpc)is preserved bothin thehangingwallandin the footwallof the SSRD (Plates1 and2). Consequently, the exposure of a complete sectionof thisformation in thelower platein thewesternpartof themapareaeffectivelydefinesa footwallcutoff. As a result,the upperplatePole Canyon limestonemusthaveoriginatedlessthan-14 km west'ofits presentposition(Plate2). Lackof controlon theprecisefault geometries underlying andbounding southernSnakeValley presents additional problems for regionalcross-section construction (Plate2). Thenatureof crosscuttingrelationships betweentherangeboundingfaultandthe SSRD is a particularlyimportant uncertainty.AlamandPilger[ 1987]andAlam [1990]report thatproprietary seismicdataobtained fromUnocalfor southern SnakeValley imagemoderately dippingreflectors thatmaycorrespond totheSSRD.If so,thentheSSRDmust steepen beneath thewestern sideof SnakeValleyasshown in Plate2 (a possibility thataccords well withtherollinghinge modeldescribedabove). However,a plausiblealternative interpretation is that thesereflectorsrecordthe geometryof therangefrontfault ratherthanthe SSRD, in whichcasethe SSRDmustbe tnmcatedby therange-bounding structure. Nevertheless, this alternativeinterpretationprobablywould not greatlyalter the grosscross-section geometrybeneath southern SnakeValley, althoughthemagnitude of extension accommodated by theSSRDwoulddecrease slighfiy. An equallyimportantuncertaintyconcernsthe geometry of upperplatefaultsbeneathsouthern SnakeValley. Fortunately,thenarrowness of southernSnakeValley andthe relativelywell knownstructureandstratigraphy of the adjacentBurbankHills provideconstraints amelioratingthis problem. Plate2 illustratesan upperplatefault geometry beneathsouthern SnakeValley thatis plausiblebut necessarily speculative.Nevertheless, whatevertheprecise faultgeometryunderlyingSnakeValley, thenarrowness of thebasinservesto limit the magnitudeof errorassociated with thisuncertaintybecauseextensionwithintheupper plateacrossSnakeValley canbe no lessthan0 km andno greaterthanthe widthof the valley (8 kin). .Natureand geometryof lowerplate strain. Regardless of how theuncertainties discussed aboveareresolved,differing cross-sections arepossibledepending on thekinematicbehavior attributedto the SSRD. For instance,if a strict in situ extension modelis invoked[e.g.,Miller et a1.,1983],then thinningandnearlycoaxialstretchingof lowerplateunits directlybeneaththe SSRDmustfully accommodate upper plateextensionat any givenpointalongthedetachment.On theotherhand,if a strictsimpleshearmodelis invoked[e.g., Wernicke,1981;BartleyandWernicke,1984],thenthefinal geomett3' of lower plateunitsdependson the distributionand magnitude of shearstrainandthe initialorientation of lower platestratarelativeto the shearzoneboundary.As outlined 30 McGrew: Originof Southern Snake RangeD6collement, Nevada earlier,lowerplate strainrelationships in the southernSnake Rangeseemto precludeeitherend-member interpretation, but betweenthesetwo extremesa broadspectrumof plausible scenarios exists,includingsomethatresembletheendmemberinterpretations. In short,it seemslikely thatsomebut not all of the extensionin upperplaterockswasaccommodated in situby penetrative stretchingdirectlybeneaththe SSRD. Consequently, theSSRDmaywell haveactedasa "stretching shearzone"in the senseof Means [ 1989], with the detachment functioningat leastin part to maintainstraincompatibility betweena relativelyrigid upperplateanda lowerplatethat wasstretching plasticallyas deformation proceeded.Plate2 illustratesbothan end-memberstretchingshearzone interpretation of the SSRD (solidlines)anda hybrid interpretation in whichtheSSRDfunctionsin partas a stretching shearzoneandin partasa moreconventional through-going shearzone(brokenlines). In thefast case stretching of lowerplaterocksby homogeneous planestrain completely accommodates displacement of upperplaterocks, whereasin the secondcaselowerplatestretching accommodates onlypartof thedisplacement on theSSRD, withtheremainderbeingtakenupby through-going shear. In eithercase,asextensionmigrateseastwardthrough time,portionsof the lowerplatelying to the westexperience unroofing andhencecoolingandcessation of plasticdeformationat an earlierstagethando areasto theeast(compatible with theK-Ar coolingagepatternsrecognized by Lee et at. [1970]). Accordingly, themoreprotracted historyof plastic deformation in the east results in a west-to-east strain gradientin lowerplateunitssuchasthatdepictedfor theendmemberstretchingshearzoneinterpretation in Plate2. While exposures of lowerplaterocksare not sufficiently extensiveto documentsucha straingradientin the southern SnakeRange,a strikinglysimilarstrainpatternis well documented in thenorthernSnakeRange[J.Leeet al., 1987]. While'bearing muchin common within situextension interpretations previouslyadvanced for thenorthernSnake Ranged6cottement [GansandMiller, 1983;Miller et at., 1983], it shouldbe notedthat the end-memberstretching shearzoneinterpretation developedabovediffersin thatit requiresa largecomponent of uniform-sense noncoaxial strainparallel to the SSRD. For example,in the westernpart of thecross-section theupperplateaccommodates at least 120% extensionwhereasthe lower plateaccommodates no morethan65% extension,thusrequiringsubstantial downto-the-eastdisplacement on the SSRD. Cross-section reconstruction. The cross-section restorationillustratedin Plate 2 is balancedwith respectto areabut doesnot conserveline lengthsor stratigraphic thicknesses due to the deformationat mechanisms assumed. To wit, lowerplateunitswere asstuned to stretchandthin plasticallyduringdeformation andsocannotconserve line length. In addition,lateraldifferencesin verticaluplift accompanying deformation wereaccommodated by vertical simpleshear.In upperplaterocks,spaceproblemsdeveloping betweenadjacentfaultblocksduringextension were accommodated insofaraspossible by rigidbodyrotations (a line lengthconservative process resembling the tilt block modelsof Proffett[1977], Gansand Miller [1983], andother authors).However,asnumerousauthorshavepointedout,it is not possibleto completelyaccommodate spaceproblems betweenfaultblocksby rigid bodyrotationalone[e.g., WernickeandBurchfiel,1982],andsointernaldeformation by inclinedsimpleshearwasutilizedto accommodate residual spaceproblemsasnecessary (a processthatdoesnotconserve line lengths)[Whiteet al., 1986;McGrewandCrews,1990]. The reconstruction shownin Plate2 yieldsan estimateof totalextensionof approximately19 km betweenthe central partof thesouthern SnakeRangeandthehingeline of the CRST. Assumingdifferentkinematicmechanisms or contrasting cross-section parameters cangiveriseto different estimatesof extension,but extensionprobablyliesbetween8 km and24 km providedthat the footwallcutoffof the Cambrian PoleCanyonFormationis honoredandthatan upperplatefaultreconstruction resembling thatshownin Plate2 is adopted. DISCUSSION AND CONCLUSIONS In thepreferredscenariodevelopedin Plate2, theSSRD initatesasa plasticstretchingshearzoneseparating an upper platethatdeformsby frictionalslidingon steeplyinclined normalfaultsfrom a lower plate that deformsby penetrative stretchingandplutonemplacement[cf. Miller et al., 1983; Means,1989]. As illustrated,a majoreastdippingnormal fault resemblingmodernrangefront fault systemsgoverns upperplatedeformation duringthe earlyphasesof extension, with an arrayof closelyspaceddown-to-the-west normal faultsantitheticto the masterfault accommodating hanging wall collapse[cf. White et al., 1986]. As extensionproceeds, tilt block rotationof the antitheticsystemresultsin dramaticattenuation of upperplaterocks,thusapplyinga negativeisostaticloadto footwallrocksandultimately resultingin relativeuplift of the lower plate and backrotationof the masternormal fault in the westernpart of the extendedterrain[cf. ZandtandOwens,1980, Buck, 1988]. Meanwhile,asareasto thewestarerelativelyuplifted,adjacentsegments of the SSRD thatwereoriginallyshallowly dippingmustbecome moresteeplyinclinedandthuscan remainactiveastectonicunroofingcarriesthemupwardinto thefrictionalslidingregime[cf. WernickeandAxen, 1988]. Perhapsnet lateralflow of deepcrustalmaterialout from beneathlessextended adjacentareascouldhelpaccommodate suchdifferential verticalmotions[cf.Gans,1987]. In any case,asunroofingproceeds from westto east,upperplate faultsandthe SSRDitselfeventuallyrotateto sufficiently shallowanglesthatfurtherslip becomesimpossible dueto frictionalresistance, andasa restfitnewsteeplydipping faultsmustform, trackingunroofingtowardthe east. Meanwhile,portionsof the lowerplatein the westernpartof theareaexperience unroofingearlierandpassthroughAr closuretemperatures earlierthanin theeast(possibly contributing to the eastwarddecreasein K-At muscovite coolingagesrecognized by Leeet at., 1970]. In otherwords, updipportions of theextensional system become defunct as down-dipportionsof thesystemtowardtheeastcontinueto accommodate extension. McGrew:Originof Southern SnakeRangeDtcollement, Nevada AlthoughPlate2 illustratesa plausiblescenariofor the structuralevolutionof the southernSnakeRange,it shouldbe evidentthatcertainelementsin this scenarioare more speculative•_han others.Amongthemostpoorlyconstrained elementsin thisscenarioare theinitial dip of theSSRD in the westernpartof thecross-section, thenatureof crosscutting relationships betweenthe SSRDandtherangefrontstructure, andtheprecisegeometryof lowerplateunitsto theeastof thesouthern SnakeRange.Thedip of theSSRDat inter- mediatestages in itsevolutionary historyandtheprecise effectof isostaticcompensation on the evolutionof this geometrypresentothermajorelementsof uncertainty. Nevertheless, despiteimportantuncertainties,several pointscanbe madewithsomeconfidence.The SSRDformed asa plasticshearzonesometime afteremplacement of the 36 Ma YoungCanyon-Kious Basinpluton,butby thetimeit ceased to be active(probablybefore17 Ma, at leastin the SnakeRangeproper)it wasprobablyfunctioningas a brittle normalfault. While the initial dip of the SSRD is uncertain alongthewesternflank of therange,it very probablyformed at shallowinclinationparallel to lower plate stratain the east. In theupperplate,an earlygeneration of westward dippingfaultsand a later generationof eastwarddipping faultsclearlyaccommodated greatextension, andattenuation of hangingwall rocksultimatelyproduceddramatic unroofingandrelativeuplift of lowerplaterockscompared to surrounding areas. Suchdifferentialverticalmovements are difficult to explainexceptin the contextof isostasy. Finally,penetrativestretchingof lowerplaterocksdirectly 33 beneath theSSRDappears tohaveaccommodated at leastpart of upperplateextension, buta substantive component of ESE directedshearis alsopresent.Consequently, theSSRD probably playeda dualkinematic role,actingin partto transfer displacement downdiptowardtheeastandin partto resolverelativelylocalizedstrainmismatches betweena relatively rigidupperplateanda plastically stretching lower plate. Acknowledgements. ElizabethL. Miller provided particu- larlyinvaluable advice andsupport during thecourse of this work. In addition,the 1984StanfordGeologicalSurveycon- tdbutedmuchbasicdataandmanyimportant insights to this study.Excluding theauthor, theparticipants in thisfield campwere:Bill Aaron,LisaBaugh,AdamBryer,Shana Brokken, TonyCampbell, DougClark,ClaireDuncan, Phil Gans,CareyGazis,Stanley Grant,PeterLewis,KarenMerino, EricMiller,SteveMunn,KirbyShanks, DavidStahl,Andy Tomlinson,JackWhittimore,andElizabethMiller (leaderof SGS).PhilGans,JeffLee,andJimWrightprovided many usefuldiscussions, andKarenMerinoandHeidi S. McGrew provided especially important fieldandotherassistance. Peg Brownprovided vainable assistance in drafting.JohnBartley, TeklaHarms,andRichardAllmendinger providedthorough andusefulreviews.Fundingfor thisprojectcamein part fromgeneral grantsfromARCOandSOHIO,in partfrom NSFgrantEAR 8418678to E. L. Milleret al.,andin part froma Stanford GeologyDepartment graduate fellowship. REFERENCES Alam, A.H.M. Shah,Crustalextensionin the southern SnakeRangeandvicinity, Nevada-Utah:An integratedgeological andgeophysical study,Ph.D.thesis,La. StateUniv., BatonRouge,126pp.,1990. Alam, A.H.M. Shah,andR.H. Pilger,Jr., Extensionof the southernSnakeRange Dtcollement beneath the southern Snake Valleybasedon reflectionseismicdata: BasinandRangeProvince,Nevada-Utah, Geol.Soc.Am.Abstr.Programs,19, 568, 1987. Allmendinger, R.W., J.W.Sharp,D. VonTish, L. Serpa, L. Brown,S. Kauffinan, J.Oliver, andR.B. Smith,CenozoicandMesozoic structure of the eastern Great Basin province,Utah,fromCOCORPseismicreflectiondata,Geology,I1,532-536, 1983. Anderson,R.E., Cenozoicstructuralhistory of selectedareasin the easternGreat Basin, Nevada-Utah,U.S. Geot Surv.OpenFile Rep.,83-504,47 pp.,1983. .Armstrong, R.L., Low-angle(denudational) faults,hinterlandof the SevierOrogenic Belt, easternNevadaand westernUtah, Geol. Soc.Am. Bull., 83, 1729-1754, 1972. Bartley,J.M.,andB. Wemicke,The Snake Rangedtcollementinterpreted asa major extensionalshearzone,Tectonics,3, 647657,1984. Best,M.G., andS.K.Grant,Oligocene and Miocene volcanic rocks in the central upliftof rocks,andexhumation of rocks, Geology, Ill, 1173-1177, 1990. Gans,P.B.,An open-system, two-layer crustal stretching modelfor theeastern Great Basin,Tectonics, 6, 1-12,1987. Gaas,P.B.,andE.L. Miller,Styleof midTertiaryextension in east-central Nevada, in Geologic Excursions in theOverthrust Belt andMetamorphic CoreComplexes of theIntermountain Region,Nevada, Geological Societyof AmericaGuidebook Part1, Spec.Stud.UtahGeot Miner. Surv.,59, 107-160,1983. Gaas,P.B.,andE.L. Miller,Comment on"The SnakeRanged6eollement interpreted asa majorextensional shearzone"by JohnM. Cordillera, in Processesin Continental BartIcyandBrianP. Wernicke,Tectonics, 4,411-415,1985. Lithospheric Deformation,editedby S.P. Gaas,P.B.,E.L. Miller, J.McCarthy,andM.L. Clark, Jr. et al., Geol.Soc.Am. Spec. Ouldcott,Tertiaryextensional faulting Pap.,218,, 133-159,1988. andevolvingductile-brittle transition Davis,G.H., Shearzonemodelfor theorigin zonesin thenorthernSnakeRangeand of metamorphic corecomplexes,Geology, 11, 342-347,1983. vicinity:Newinsights fromseismic data, Geology, 13,189-193,1985. Eaton,G.P.,TheBasinandRangeProvince: Hamilton,W., Crustalextension in theBasin Originandtectonicsignificance, Annu. andRangeProvince, southwestern United Rev. Earth Planet. Sci. Lett., I O, 409-440, 1982. States,in ContinentalExtensional Tectonics, editedby M.P. Cowardet al., England,P., andP. Molnar,Surfaceuplift, Pioche-Marysvale igneousbelt, western UtahandeasternNevada:Stratigraphy of thevolcanicOligoceneNeedlesRange Groupin southwestern Utah and eastern Nevada,U.S.Geol.Surv.Prof Pap., 1433A, 1-28, 1987. Buck, W.R., Flexural rotationof normal faults,Tectonics,7, 959-974, 1988. Davis,G.A., andG.S. Lister,Detachment faultingin continentalextension; Perspectivesfrom the southwesternU.S. Geol.Soc.Spec.Publ.,London, 28, 155- northeastern Nevada are Late Cretaceous 176,1987. in age,in ShorterContributions to Isotope Research, editedby Z.E. Peterman and D.C. Hintze,L.F., Geologyof theBurbank,Tunnel SpringandnorthernNeedleRanges, Millard and Beaver Counties,Utah, scale 1:48,000,BrighamYoungUniv. Geol. Dep.,SaltLakeCity,Utah,1960. Hintze,L.F., GeologicMap of Utah,scale 1:500,000,UtahGeol.andMiner. Surv., SaltLakeCity, Utah,1980. Hose,R.K., andM.C. Blake,Geologyand mineralresources of White Pine County, Nevada,part1, Geology,Bull.Nev.Bur. MinesGeol.,85, 105pp., 1976. Jackson, J.A., Activenormalfaultingand crustalextension, in Continental Extensional Tectonics,editedby M.P. Cowardet al., Geol. Soc.Spec.Publ., London,28, 3-18, 1987. Jackson, J.A.,andD.P. McKenzie,The geometrical evolutionof normalfault systems, J. Struct.Geol.,5, 471-482,1983. Kligfield,R., J.Crespi,S. Naruk,andG.H. Davis,Displacement andstrainpatterns of extensional orogens,Tectonics, 3, 577609,1984. Lee, D.E., andE.H. Christiansen, The mineralogy of theSnakeCreek- Williams Canyonpluton,southern SnakeRange, Nevada, U.S. Geol. Surv.OpenFile Rep., 83-337,21 pp.,1983a. Lee,D.E., andE.H. Christiansen, The granite problemin thesouthern SnakeRange, Nevada, Contrib.Mineral. Petrol., 83, 99116,1983b. Lee,D.E., andR.E. Van Loenen,Hybrid granitoidrocksof thesouthernSnake Range,Nevada,U.S.Geol.Surv.Prof. Pap.,68, 1-46,1971. Lee,D.E., T.W. Stern,R.E. Mays,andR.E. Van Loenen,,Accessory zirconfromgranitoid rocksof the Mt. Wheeler Mine area, Nevada, U.S.Geol.Surv.Prof Pap., 600D, D197-D203, 1968. Lee, D.E., R.F. Marvin,T.W. Stern,andZ.E. Peterman,Modificationof K-Ar agesby Tertiarythrustingin theSnakeRange, WhitePineCounty,Nevada, U.S.Geol. Surv.Prof.Pap.,700-D,D92-D102,1970. Lee,D.E., T.W. Stern,andR.F. Marvin,U-ThPb isotopicagesof zirconfrom the southern SnakeRange,Nevada,Isochron West,31, p. 25, 1981. Lee,D.E., I. Friedman,andJ.D.Gleason,The oxygenisotopecomposition of granitoid andsedimentary rocksof the southern SnakeRange,Nevada,Contrib.Mineral. Petrol., 79, 150-158, 1982. Lee, D.E., I. Friedman,andJ.D. Gleason, Schnabel,U.S. Geol. Surv.Bull., B1622, 31-39,1986a. Lee,D.E., R.W. Kistler,andA.C. Robinson, The strontiumisotopecomposition of granitoid rocksfromthesouthern Snake Range,Nevada,in ShorterContributions to IsotopeResearch, editedby Z.E. PetermanandD.C. Schnabel, U.S. Geol. Surv.Bull., B1622,171-179, 1986b. Lee, J., andJ.F. Sutter,Incremental 40Ar/39Ar thermochronology ofmylon- Geology, 13,353-356,1985. Spencer, J.E.,Roleof tectonic denudation in warpingandupliftof low-angle normal faults,Geology, 12,95-98,1984. 1969. in central-northeast Nevada and some Petrol., 88, 288-298, 1984. Nev. Geol.Sot., 1lth Ann. FieldConf., Nevadagranitoid rocksspafiallyrelated detachmentfault, west-centralArizona, centralBasinandRangeprovince: Zandt,G., andT.J. Owens,Crustalflexure Tectonicsettingandrelationshipto associated with normalfaultingand magmatism, in Metamorphism and implications for seismicityalongthe CrustalEvolutionof the WesternUnited WasatchFront, Utah, Bull. Seismol.Soc. States:RubeyVolumeVII, editedby W.G. Ant, 70, 1501-1520,1980. Ernst,pp.649-682,PrenticeHall, Englewood Cliffs,N.J., 1988. Misch,P., Regionalstructural reconnaissance A. J. McGrew,Geologisches Institut, to thrustfaults, Contrib. Mineral of delta D values in eastern 247-266, 1977. Ramsay, J.G.,andM.I. Huber,TheTechniques of ModernStructural Geology,vol. I, StrainAnalysis, 307pp.,Academic, San Diego,Calif., 1983. Reynolds, S.J.,andJ.E.Spencer, Evidence for large-scale transport on theBullard itii: rocksfrom thenorthernSnakeRange, Stewart,J.H., Extensionaltectonicsin the Nevada,Tectonics,10, 77-100, 1991. DeathValley area,California:Transport Lee, J., E.L. Miller, andJ.F. Sutter,Ductile of thePanamint Rangestructural block80 strainandmetamorphism in an extensional km northwestward, Geology, 11, 153-157, tectonicsetting:A casestudyfromthe 1983. northernSnakeRange,Nevada,U.S.A.,in Stewart, J.H.,andJ.E.Carlson,GeologicMap ContinentalExtensionalTectonics, edited of Nevada,scale1:500,000,U.S. Geol. by M.P. Cowardet al., Geol.Soc.Spec. Surv.,Reston,Va., 1976. Publ.,London,28, 267-298, 1987. Wemicke,B., Lowanglenormalfaultsin the Lewis,C.J.,J. Selverstone, andB. Wemicke, BasinandRangeprovince:Nappetectonics Deepburialdepthsfor metapelites from in anextending orogen,Nature,291,645thelowerplateof thenorthernSnake 648,1981. Rangedecollement, Nevada,Geol.Soc. Wemicke,B., andG.J. Axen,On therole of Ant Abstr.Programs, 24, 23, 1992. isostasy in theevolutionof normalfault Marshak,S., andG. Mitra, BasicMethodsof systems, Geology,16, 848-851,1988. StructuralGeology,446 pp., Prentice Wemicke,B., andJ.M. Bartley,Replyto Hall, EnglewoodCliffs, N.J., 1988. commentby PhillipB. GansandElizabeth MeGfew, A.J., Deformafionalhistoryof the L. Miller,Tectonics,4, 417-419, 1985. southern SnakeRange,Nevada,andthe Wemicke,B. andB.C. Burchild, Modesof originof thesouthern SnakeRange extensionaltectonics,J. Struct. Geol., 4, dicollement, M.S. thesis,StanfordUniv., 105-115, 1982. 46 pp.,Stanford,Calif., 1986. MeGfew, A.J., andS.G. Crews,A quantitative Wernicke,B., G.J.Axea,andJ.K.Snow,Basin andRangeextensional tectonicsat the modelfor the geometrical evolutionof latitudeof LasVegas,Nevada,Geol. Soc. multiple fault extensionalsystems,Geol. Ant Bull., 100, 1738-1757, 1988. Soc.Am.Abstr.Programs,22, A273, White, N.J., J.A. Jackson,andD.P. McKenzie, 1990. The relationship betweenthegeometryof Means,W.D., Stretchingfaults,Geology,17, normalfaultsand that of thesedimentary 893-896, 1989. layersin theirhangingwalls,J. Struct. Miller, E.L., P.B. Gans,andJ. Garing,The Geol., & 897-909, 1986. SnakeRangedicollement:An exhumed Whitebread, D.H., GeologicMap of the mid-Tertiary ductile-brittletransition, WheelerPeakandGarrisonQuadrangles, Tectonics,2, 239-263, 1983. NevadaandUtah, scale 1:48,000, U.S. Miller, E.L., P.B. Gatas,J.E.Wright,andJ.F. Geol. Surv.Misc. Field Stud.Map, 1-578, Sutter,Metamorphichistoryof the east- adjacent areas:observations and interpretations, in Guidebook to the Geology of East-central Nevada,pp.1742, Interrot.Assoc.Pet.Geol.andEastern Modification Yerington district,Nevada,andimplicationsfor thenatureandoriginof Basinand Rangefaulting,Geol.Soc.Am.Bull.,88, SaltLakeCity, Utah,1960. Lee,D.E.,J.S.Stacey, andL. Fischer, Muscovite Proffett,J.M., Cenozoicgeologyof the phenocrysfic twomicagranites of Eidgen'6•sische Technische Hochschule Ziirich (SwissFederalInstituteof Technology at Zurich),CH-8092Ziirich,Switzerland. (ReceivedOctober5,1989; revisedJune26, 1992; accepted July21, 1992.)
© Copyright 2025 Paperzz