4.3 Logarithmic Functions The inverse function of the exponential function with base b is called the logarithmic function with base b. x Exponential Function: f x b Find the inverse: 1.) Replace f x with y. 2.) Interchange x and y. 3.) Solve for y. y bx x by y logb x Logarithmic Function For x 0 and b 0, b 1 , y logb x is equivalent to b y x . b: base x: argument Ex. Write each equation in its equivalent exponential form or logarithmic form. a.) Logarithmic Form 6 log 2 64 b.) 2 log9 x c.) log5 125 y Exponential Form 1 125 3 64 x 3 b 343 8 y 300 53 d.) e.) f.) g.) Ex. Evaluate each expression without using a calculator. a.) log 7 49 1 b.) log3 27 c.) log6 6 F16-CA-Miller Sec. 4.3 Page 1 of 4 Prof. LANGFORD Special Logarithms Common Logarithm (base 10) Natural Logarithm (base e) Basic Properties of Logarithms log1 0 1.) logb 1 0 log10 1 2.) logb b 1 log10 x log x log e x ln x ln1 0 ln e 1 x 3.) log b b x log10 x x ln e x x log x 4.) b b x 10log x x e ln x x Ex. Evaluate each expression without using a calculator. a.) log11 11 b.) log 1 c.) ln e 8 d.) log10 log 22 f.) 7 7 log a 2 3 e.) 10 ln 7 x h.) e 2 1 g.) ln 7 e Graphs of Logarithmic Functions x Ex. Graph f x 3 and g x log3 x in the same rectangular coordinate system. x -2 -1 0 1 2 y = 3x y x y = log3 x x Domain of f : Domain of g : Range of f : Range of g : F16-CA-Miller Sec. 4.3 Page 2 of 4 Prof. LANGFORD x 1 Ex. Graph f x and g x log 1 x in the same rectangular coordinate 2 2 y system. x -2 -1 0 1 2 y = (1/2)x x y = log(1/2) x x Domain of f : Domain of g : Range of f : Range of g : Characteristics of Logarithmic Graphs of the Form f x logb x : (p.434) 1) Domain: Range: 2) The point that all graphs pass through: x-intercept: y-intercept: 3) b 1: f x logb x is an function 4) 0 b 1 : f x logb x is an function 5) Vertical Asymptote: Note: Exponential function always has a horizontal asymptote. Logarithmic function always has a vertical asymptote. F16-CA-Miller Sec. 4.3 Page 3 of 4 Prof. LANGFORD The Domain of a Logarithmic Function The domain of a logarithmic function, f x logb x , is the set of all real numbers. In general, the domain of f x logb g x consists of all x for which g x 0 . Ex. Find the domain of each logarithmic function in interval notation. b) f x ln 7 3x a) f x log5 x 6 Transformations of Logarithmic Functions Ex. Given the graph of f x log x . i) Use the transformations of this graph to graph the given function. ii) Give equations of the asymptotes. iii) Use the graphs to determine each function’s domain and range. (a) g x log( x 2) (b) h x 2 log x y x y x V.A.: V.A.: Domain: Domain: Range: Range: F16-CA-Miller Sec. 4.3 Page 4 of 4 Prof. LANGFORD
© Copyright 2026 Paperzz