Document

Fundamentals of Thermodynamics
Chapter 10
Power and Refrigeration Systems
Gaseous Working Fluids
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.1 Air-standard power cycles
‑ Working fluid : Fixed mass of air
‑ Combustion process : replaced by heat transfer from external s
ource
‑ Exhaust & intake process : replaced by heat transfer to the surr
ounding
‑ Internally reversible
‑ Constant specific heat
Internal Combustion Engine – Otto, Diesel, gas-turbine
External Combustion Engine – Steam, Stirling
Thermal Engineering Lab.
2
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.2 The Brayton cycle
2개의 P = const
2개의 S = const
process를 구성
QL
hth = 1 QH
working fluid : gas ( single phase )
Thermal Engineering Lab.
3
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
C p (T4 - T1 )
QL
hth = 1 = 1QH
C p (T3 - T2 )
= 1-
T1 (T4 / T1 - 1)
T2 (T3 / T2 - 1)
Thermal Engineering Lab.
4
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
P3 P2
=
P4 P1
P2 æ T2 ö
=ç ÷
P1 è T1 ø
k
k -1
P3 æ T3 ö
=
=ç ÷
P4 è T4 ø
k
k -1
T3 T2
T T
T
T
=
® 3 = 4 ® 3 -1 = 4 -1
T4 T1
T2 T1
T2
T1
æ P1 ö
T1
\hth = 1 - = 1 - ç ÷
T2
è P2 ø
k -1
k
1
= 1-
( P2 / P1 )
k -1
k
1- 2¢ - 3¢ - 4 - 1 : TH,avg ­ ® h ­
1- 2¢ - 3¢¢ - 4¢¢ - 1: TH,avg ­ ® h ­, kg당 work 감소
Thermal Engineering Lab.
5
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
ì Pv k = const
í
î Pv = RT
RT k
× v = const
v
Tv k -1 = const
k
æ RT ö
pç
÷ = const
è p ø
p1- k × T k = const
T ×P
1- k
k
= const
T2 æ P1 ö
=ç ÷
T1 è P2 ø
1- k
k
æ P2 ö
=ç ÷
è P1 ø
Thermal Engineering Lab.
k -1
k
6
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
실제 cycle
compressor가 40 ~ 80% 차지
hcomp =
h2 s - h1
h2 - h1
hturb =
h3 - h4
h3 - h4 s
Thermal Engineering Lab.
7
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.1
In an air-standard Brayton cycle, the air enters the compressor at 0.1 Mpa
and 15℃. The pressure leaving the compressor is 1.0 MPa, and the maxi
mum temperature in the cycle is 1100℃. Determine
1. The pressure and temperature at each point in the cycle.
2. The compressor work, turbine work, and cycle efficiency.
Thermal Engineering Lab.
8
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.2
Consider a gas turbine with air entering the compressor under the same c
onditions as in Example 10.1 and leaving at a pressure of 1.0 Mpa. The m
aximum temperature is 1100℃. Assume a compressor efficiency of 80 %,
a turbine efficiency of 85 %, and a pressure drop between the compressor
and turbine of 15 kPa. Determine the compressor work, turbine work, and
cycle efficiency.
Thermal Engineering Lab.
9
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.3 The simple gas-turbine cycle with a regenerator
Thermal Engineering Lab.
10
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
qH = C p (T3 - Tx )
wnet wt - wc
hth =
=
qH
qH
wt = C p (T3 - T4 )
Ideal case: Tx =T4 ® q H =w t
C p (T2 - T1 )
qH - wc
wc
hth =
= 1= 1qH
wt
C p (T3 - T4 )
k -1
é
ù
k
éæ T2 ö ù
P
æ 2 ö - 1ú
ê
1
ç
÷
T1 êëè T1 ø úû
T1 ê èç P1 ø÷
ú
= 1= 1k -1 ú
T3 é æ T4 ö ù
T3 ê
ê1 - æç P1 ö÷ k ú
êë1 - çè T3 ÷ø úû
ëê è P2 ø ûú
k -1
é
ù
k
k -1
P
æ
ö
ê1 - ç 1 ÷ ú
k
P2 ø ú
T æP ö
= 1- 1 ç 2 ÷ ê è
k -1 ú
T3 è P1 ø ê
ê1 - æç P1 ö÷ k ú
êë è P2 ø úû
= 1-
T1 æ P2 ö
ç ÷
T3 è P1 ø
Thermal Engineering Lab.
k -1
k
= 1-
T2
T3
11
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
regenerator efficiency
hreg
hx - h2
=
hx ' - h2
hreg
Tx - T2
=
Tx ' - T2
if C p = const.
Thermal Engineering Lab.
12
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.3
If an ideal regenerator is incorporated into the cycle of Example 10.1, det
ermine the thermal efficiency of the cycle.
Thermal Engineering Lab.
13
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.4 Gas-turbine power cycle configurations
Ericsson Cycle
Thermal Engineering Lab.
2개의 const. T
2개의 const. P
14
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.4
An air-standard power cycle has the same states given in Example 10.1. I
n this cycle, however, the compressor and turbine are both reversible, isot
hermal processes. Calculate the compressor work and the turbine work, a
nd compare the results with those of Example 10.1.
Thermal Engineering Lab.
15
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Thermal Engineering Lab.
16
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.5 The air-standard cycle for jet propulsion
Thermal Engineering Lab.
17
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.5
Consider an ideal jet propulsion cycle in which air enters the compressor
at 0.1 Mpa and 15℃. The pressure leaving the compressor is 1.0 Mpa, an
d the maximum temperature is 1100℃. The air expands in the turbine to a
pressure at which the turbine work is just equal to the compressor work.
On leaving the turbine, the air expands in a nozzle to 0.1 Mpa. The proce
ss is reversible and adiabatic. Determine the velocity of the air leaving th
e nozzle.
Thermal Engineering Lab.
18
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.6 The air-standard refrigeration cycle
CP (T1 - T4 )
qL
qL
h1 - h4
COP ( b ) =
=
=
»
wnet wC - wE h2 - h1 - ( h3 - h4 ) CP (T2 - T1 ) - CP (T3 - T4 )
Thermal Engineering Lab.
19
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
P2 æ T2 ö
=ç ÷
P1 è T1 ø
k / ( k -1)
P3 æ T3 ö
=
=ç ÷
P4 è T4 ø
k / ( k -1)
T1 - T4
1
1
b=
=
=
1
T
/
T
T2
T
T2 - T1 - T3 + T4
3
2
2
-1
T1 1 - T4 / T1 T1
=
1
rp( k -1) / k
Thermal Engineering Lab.
20
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Thermal Engineering Lab.
21
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.6
Consider the simple air-standard refrigeration cycle of Fig. 10.12. Air ent
ers the compressor at 0.1 MPa and -20℃ and leaves at 0.5 MPa. Air enter
s the expander at 15℃. Determine
1. The COP for this cycle.
2. The rate at which air must enter the compressor to provide 1 kW of
refrigeration.
Thermal Engineering Lab.
22
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.7 Reciprocating engine power cycles
Stroke : S = 2 Rcrank
Displacement : Vdispl = N cyl (Vmax - Vmin ) = N cyl Acyl S
Compression ratio : rv = Vmax / Vmin
Net work per cylinder:Wnet = mwnet = Pmeff (Vmax - Vmin )
RPM
RPM
&
Power : W = N cyl mwnet
= Pmeff Vdisp
60
60
Thermal Engineering Lab.
23
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.8 The Otto cycle
2개의 S = const
2개의 V = const
process를 구성
Thermal Engineering Lab.
24
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
mCv (T4 - T1 )
QH - QL
QL
h th =
= 1= 1QH
QH
mCv (T3 - T2 )
æ T4 - 1ö
1- k
ç
÷
æ v1 ö
T1 è T1 ø
T1
1
= 1= 1 - = 1 - ç ÷ = 1 - rv1- k = 1 - k -1
T2 æ T3 - 1ö
T2
rv
è v2 ø
ç T
÷
è 2 ø
Pv k = const
Pv = RT
Pv
1 1 = RT1
P2 v2 = RT2
R T1v1k -1 = R T2 v2 k -1
T2 æ v1 ö
=ç ÷
T1 è v2 ø
k -1
æ v4 ö
=ç ÷
è v3 ø
Thermal Engineering Lab.
k -1
T3
=
T4
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
tetraethyl lead ® knocking 방지
옥탄가
iso - octan ( C8 H 18 ) 과 n - heptan ( C7 H 16 ) 의 질량비로 결정
Thermal Engineering Lab.
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
*Deviation
1. Cv ­
T­
2. Incomplete Combustion
3. 배기 흡기를 위한 Work
4. Heat Loss
5. Irreversibilities
Thermal Engineering Lab.
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.7
The compression ratio in an air-standard Otto cycle is 10. At the beginnin
g of the compression stoke, the pressure is 0.1 MPa and the temperature is
15℃. The heat transfer to the air per cycle is 1800 kJ/kg air. Determine
1. The pressure and temperature at the end of each process of the cycle.
2. The thermal efficiency.
3. The mean effective pressure.
Thermal Engineering Lab.
28
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.9 The Diesel cycle
hth = 1 = 1-
QL
QH
Cv ( T4 - T1 )
C P ( T3 - T2 )
T1 (T4 / T1 - 1)
= 1×
kT2 (T3 / T2 - 1)
(
Effect
i ) 1 - 2 - 3¢ - 4¢ - 1
ii ) Otto 1 - 2 - 3¢¢ - 4 - 1
iii ) Otto 1 - 2¢ - 3 - 4 - 1
h¯
h­
h¯
)
k
é
b
-1 ù
1
ú
hth = 1 - k -1 ê
rv ê k ( b - 1) ú
ë
û
b : cutoff ratio
v T
b= 3= 3
v2 T2
최고온도를 제한했을 때에는 h Diesel >hOtto
Thermal Engineering Lab.
29
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
T - S 선도상에서 등압곡선과 등적곡선의 기울기
v = const
Tds = du + Pdv = Cv dT
¶T ö
T
=
÷
¶S øv Cv
P = const
Tds = dh - vdP = C p dT
¶T ö
T
=
÷
¶S ø p CP
Thermal Engineering Lab.
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Ex. 10.8
An air-standard diesel cycle has a compression ratio of 20, and the heat tra
nsferred to the working fluid per cycle is 1800 kJ/kg. At the beginning of t
he compression process, the pressure is 0.1 MPa and the temperature is 1
5℃. Determine
1. The pressure and temperature at each point in the cycle.
2. The thermal efficiency.
3. The mean effective pressure.
Thermal Engineering Lab.
31
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.10 The Stirling cycle
2개의 T = const
2개의 V = const
process를 구성
Thermal Engineering Lab.
32
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.11 The Atkinson and Miller cycles
Higher expansion ratio than compression ratio
For the compression amd expansion processes(s=const),
T2 æ v1 ö
=ç ÷
T1 è v2 ø
k -1
T4 æ v3 ö
,
=ç ÷
T3 è v4 ø
k -1
Thermal Engineering Lab.
33
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
The heat rejection process gives
æ v4 ö
P = C : T4 = ç ÷ T1 , qL = h4 - h1
è v1 ø
The efficiency of the cycle becomes
qH - qL
qL
h4 - h1
h=
= 1= 1qH
qH
u3 - u2
C p (T4 - T1 )
T4 - T1
= 1= 1- k
Cv (T3 - T2 )
T3 - T2
Thermal Engineering Lab.
34
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
The smaller compression ratio : CR1 = ( v1 / v3 )
The expansion ratio : CR = ( v4 / v3 )
æ
æ v4 ö
CR
k -1
T
=
T
CR
,
T
=
T
=
T1
ç 2 1 1
ç ÷ 1
4
v1 ø
CR1
è
ç
®
ç
k
CR
CR
k -1
ç T3 = T4CR k -1 =
T
CR
=
T1
1
ç
CR1
CR1
è
The efficiency of the cycle becomes
CR
-1
CR1
CR - CR1
h = 1- k
= 1- k
k
k
k
CR
CR
CR
1
- CR1k -1
CR1
Thermal Engineering Lab.
35
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Cycle in between the Otto cycle and Atkinson cycle
Thermal Engineering Lab.
36
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
10.12 Combined-cycle power and refrigeration syste
ms
Thermal Engineering Lab.
37
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Thermal Engineering Lab.
38
Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids
Thermal Engineering Lab.
39