Fundamentals of Thermodynamics Chapter 10 Power and Refrigeration Systems Gaseous Working Fluids Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.1 Air-standard power cycles ‑ Working fluid : Fixed mass of air ‑ Combustion process : replaced by heat transfer from external s ource ‑ Exhaust & intake process : replaced by heat transfer to the surr ounding ‑ Internally reversible ‑ Constant specific heat Internal Combustion Engine – Otto, Diesel, gas-turbine External Combustion Engine – Steam, Stirling Thermal Engineering Lab. 2 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.2 The Brayton cycle 2개의 P = const 2개의 S = const process를 구성 QL hth = 1 QH working fluid : gas ( single phase ) Thermal Engineering Lab. 3 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids C p (T4 - T1 ) QL hth = 1 = 1QH C p (T3 - T2 ) = 1- T1 (T4 / T1 - 1) T2 (T3 / T2 - 1) Thermal Engineering Lab. 4 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids P3 P2 = P4 P1 P2 æ T2 ö =ç ÷ P1 è T1 ø k k -1 P3 æ T3 ö = =ç ÷ P4 è T4 ø k k -1 T3 T2 T T T T = ® 3 = 4 ® 3 -1 = 4 -1 T4 T1 T2 T1 T2 T1 æ P1 ö T1 \hth = 1 - = 1 - ç ÷ T2 è P2 ø k -1 k 1 = 1- ( P2 / P1 ) k -1 k 1- 2¢ - 3¢ - 4 - 1 : TH,avg ® h 1- 2¢ - 3¢¢ - 4¢¢ - 1: TH,avg ® h , kg당 work 감소 Thermal Engineering Lab. 5 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids ì Pv k = const í î Pv = RT RT k × v = const v Tv k -1 = const k æ RT ö pç ÷ = const è p ø p1- k × T k = const T ×P 1- k k = const T2 æ P1 ö =ç ÷ T1 è P2 ø 1- k k æ P2 ö =ç ÷ è P1 ø Thermal Engineering Lab. k -1 k 6 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 실제 cycle compressor가 40 ~ 80% 차지 hcomp = h2 s - h1 h2 - h1 hturb = h3 - h4 h3 - h4 s Thermal Engineering Lab. 7 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.1 In an air-standard Brayton cycle, the air enters the compressor at 0.1 Mpa and 15℃. The pressure leaving the compressor is 1.0 MPa, and the maxi mum temperature in the cycle is 1100℃. Determine 1. The pressure and temperature at each point in the cycle. 2. The compressor work, turbine work, and cycle efficiency. Thermal Engineering Lab. 8 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.2 Consider a gas turbine with air entering the compressor under the same c onditions as in Example 10.1 and leaving at a pressure of 1.0 Mpa. The m aximum temperature is 1100℃. Assume a compressor efficiency of 80 %, a turbine efficiency of 85 %, and a pressure drop between the compressor and turbine of 15 kPa. Determine the compressor work, turbine work, and cycle efficiency. Thermal Engineering Lab. 9 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.3 The simple gas-turbine cycle with a regenerator Thermal Engineering Lab. 10 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids qH = C p (T3 - Tx ) wnet wt - wc hth = = qH qH wt = C p (T3 - T4 ) Ideal case: Tx =T4 ® q H =w t C p (T2 - T1 ) qH - wc wc hth = = 1= 1qH wt C p (T3 - T4 ) k -1 é ù k éæ T2 ö ù P æ 2 ö - 1ú ê 1 ç ÷ T1 êëè T1 ø úû T1 ê èç P1 ø÷ ú = 1= 1k -1 ú T3 é æ T4 ö ù T3 ê ê1 - æç P1 ö÷ k ú êë1 - çè T3 ÷ø úû ëê è P2 ø ûú k -1 é ù k k -1 P æ ö ê1 - ç 1 ÷ ú k P2 ø ú T æP ö = 1- 1 ç 2 ÷ ê è k -1 ú T3 è P1 ø ê ê1 - æç P1 ö÷ k ú êë è P2 ø úû = 1- T1 æ P2 ö ç ÷ T3 è P1 ø Thermal Engineering Lab. k -1 k = 1- T2 T3 11 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids regenerator efficiency hreg hx - h2 = hx ' - h2 hreg Tx - T2 = Tx ' - T2 if C p = const. Thermal Engineering Lab. 12 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.3 If an ideal regenerator is incorporated into the cycle of Example 10.1, det ermine the thermal efficiency of the cycle. Thermal Engineering Lab. 13 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.4 Gas-turbine power cycle configurations Ericsson Cycle Thermal Engineering Lab. 2개의 const. T 2개의 const. P 14 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.4 An air-standard power cycle has the same states given in Example 10.1. I n this cycle, however, the compressor and turbine are both reversible, isot hermal processes. Calculate the compressor work and the turbine work, a nd compare the results with those of Example 10.1. Thermal Engineering Lab. 15 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Thermal Engineering Lab. 16 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.5 The air-standard cycle for jet propulsion Thermal Engineering Lab. 17 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.5 Consider an ideal jet propulsion cycle in which air enters the compressor at 0.1 Mpa and 15℃. The pressure leaving the compressor is 1.0 Mpa, an d the maximum temperature is 1100℃. The air expands in the turbine to a pressure at which the turbine work is just equal to the compressor work. On leaving the turbine, the air expands in a nozzle to 0.1 Mpa. The proce ss is reversible and adiabatic. Determine the velocity of the air leaving th e nozzle. Thermal Engineering Lab. 18 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.6 The air-standard refrigeration cycle CP (T1 - T4 ) qL qL h1 - h4 COP ( b ) = = = » wnet wC - wE h2 - h1 - ( h3 - h4 ) CP (T2 - T1 ) - CP (T3 - T4 ) Thermal Engineering Lab. 19 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids P2 æ T2 ö =ç ÷ P1 è T1 ø k / ( k -1) P3 æ T3 ö = =ç ÷ P4 è T4 ø k / ( k -1) T1 - T4 1 1 b= = = 1 T / T T2 T T2 - T1 - T3 + T4 3 2 2 -1 T1 1 - T4 / T1 T1 = 1 rp( k -1) / k Thermal Engineering Lab. 20 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Thermal Engineering Lab. 21 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.6 Consider the simple air-standard refrigeration cycle of Fig. 10.12. Air ent ers the compressor at 0.1 MPa and -20℃ and leaves at 0.5 MPa. Air enter s the expander at 15℃. Determine 1. The COP for this cycle. 2. The rate at which air must enter the compressor to provide 1 kW of refrigeration. Thermal Engineering Lab. 22 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.7 Reciprocating engine power cycles Stroke : S = 2 Rcrank Displacement : Vdispl = N cyl (Vmax - Vmin ) = N cyl Acyl S Compression ratio : rv = Vmax / Vmin Net work per cylinder:Wnet = mwnet = Pmeff (Vmax - Vmin ) RPM RPM & Power : W = N cyl mwnet = Pmeff Vdisp 60 60 Thermal Engineering Lab. 23 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.8 The Otto cycle 2개의 S = const 2개의 V = const process를 구성 Thermal Engineering Lab. 24 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids mCv (T4 - T1 ) QH - QL QL h th = = 1= 1QH QH mCv (T3 - T2 ) æ T4 - 1ö 1- k ç ÷ æ v1 ö T1 è T1 ø T1 1 = 1= 1 - = 1 - ç ÷ = 1 - rv1- k = 1 - k -1 T2 æ T3 - 1ö T2 rv è v2 ø ç T ÷ è 2 ø Pv k = const Pv = RT Pv 1 1 = RT1 P2 v2 = RT2 R T1v1k -1 = R T2 v2 k -1 T2 æ v1 ö =ç ÷ T1 è v2 ø k -1 æ v4 ö =ç ÷ è v3 ø Thermal Engineering Lab. k -1 T3 = T4 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids tetraethyl lead ® knocking 방지 옥탄가 iso - octan ( C8 H 18 ) 과 n - heptan ( C7 H 16 ) 의 질량비로 결정 Thermal Engineering Lab. Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids *Deviation 1. Cv T 2. Incomplete Combustion 3. 배기 흡기를 위한 Work 4. Heat Loss 5. Irreversibilities Thermal Engineering Lab. Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.7 The compression ratio in an air-standard Otto cycle is 10. At the beginnin g of the compression stoke, the pressure is 0.1 MPa and the temperature is 15℃. The heat transfer to the air per cycle is 1800 kJ/kg air. Determine 1. The pressure and temperature at the end of each process of the cycle. 2. The thermal efficiency. 3. The mean effective pressure. Thermal Engineering Lab. 28 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.9 The Diesel cycle hth = 1 = 1- QL QH Cv ( T4 - T1 ) C P ( T3 - T2 ) T1 (T4 / T1 - 1) = 1× kT2 (T3 / T2 - 1) ( Effect i ) 1 - 2 - 3¢ - 4¢ - 1 ii ) Otto 1 - 2 - 3¢¢ - 4 - 1 iii ) Otto 1 - 2¢ - 3 - 4 - 1 h¯ h h¯ ) k é b -1 ù 1 ú hth = 1 - k -1 ê rv ê k ( b - 1) ú ë û b : cutoff ratio v T b= 3= 3 v2 T2 최고온도를 제한했을 때에는 h Diesel >hOtto Thermal Engineering Lab. 29 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids T - S 선도상에서 등압곡선과 등적곡선의 기울기 v = const Tds = du + Pdv = Cv dT ¶T ö T = ÷ ¶S øv Cv P = const Tds = dh - vdP = C p dT ¶T ö T = ÷ ¶S ø p CP Thermal Engineering Lab. Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Ex. 10.8 An air-standard diesel cycle has a compression ratio of 20, and the heat tra nsferred to the working fluid per cycle is 1800 kJ/kg. At the beginning of t he compression process, the pressure is 0.1 MPa and the temperature is 1 5℃. Determine 1. The pressure and temperature at each point in the cycle. 2. The thermal efficiency. 3. The mean effective pressure. Thermal Engineering Lab. 31 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.10 The Stirling cycle 2개의 T = const 2개의 V = const process를 구성 Thermal Engineering Lab. 32 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.11 The Atkinson and Miller cycles Higher expansion ratio than compression ratio For the compression amd expansion processes(s=const), T2 æ v1 ö =ç ÷ T1 è v2 ø k -1 T4 æ v3 ö , =ç ÷ T3 è v4 ø k -1 Thermal Engineering Lab. 33 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids The heat rejection process gives æ v4 ö P = C : T4 = ç ÷ T1 , qL = h4 - h1 è v1 ø The efficiency of the cycle becomes qH - qL qL h4 - h1 h= = 1= 1qH qH u3 - u2 C p (T4 - T1 ) T4 - T1 = 1= 1- k Cv (T3 - T2 ) T3 - T2 Thermal Engineering Lab. 34 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids The smaller compression ratio : CR1 = ( v1 / v3 ) The expansion ratio : CR = ( v4 / v3 ) æ æ v4 ö CR k -1 T = T CR , T = T = T1 ç 2 1 1 ç ÷ 1 4 v1 ø CR1 è ç ® ç k CR CR k -1 ç T3 = T4CR k -1 = T CR = T1 1 ç CR1 CR1 è The efficiency of the cycle becomes CR -1 CR1 CR - CR1 h = 1- k = 1- k k k k CR CR CR 1 - CR1k -1 CR1 Thermal Engineering Lab. 35 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Cycle in between the Otto cycle and Atkinson cycle Thermal Engineering Lab. 36 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids 10.12 Combined-cycle power and refrigeration syste ms Thermal Engineering Lab. 37 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Thermal Engineering Lab. 38 Chapter 10. Power and Refrigeration Systems – Gaseous Working Fluids Thermal Engineering Lab. 39
© Copyright 2026 Paperzz