i.- - 13. Prorre the following trigonometric identities. a) cot2 * x sinZ x x+ cotz x sin2 - c) d) - + cos2 x=7 - 1 = sinz x - 1 = sinz x - (sinz x + cos2 x) = -cos2 x -7= cos2x.sinx.sinx CoSX.CoS.r x tan x x SeCf a f secx i. = _-;_1 cos cosx f) (1 + cos'x x) (1 - cot2 (7 + cotz xN7 s) lcos'a2 cos2 a- - 7-cos2x sin2x , _ i. = ____________;_ cosz lr) cos2 cos. x : o cos. x 1 x) = csf x' sin2 * =4! t = :1-Zsinza l ^f - sinz a) - 1 = 2 - 2 7 = 2(1 sinz a - 7 = 1 - 2 sin2 a tanx*cotx:secxcscx tan x + cot 14. 1 coszx.tanx -I : 1 -COS.X cot r - h) = "?"'"* . sinz x + sin2 x = co* x + sin2 x = 7+lanzx : tanzx cotzx+l l+lon2x _sec2x _sin2x cotzx+7 csczx cos?x =t..n2x cot 1 * I -r csc'x sec'I 71 --+-+---* csc't set x = sin2 x cos2 el sinz 1,11 b) -r x:1 sin2 x = sinx * cosx - sin2x+cos2x cosx sinx cos -r stn x 77 cosxsinx cosx sinx sec x csc x Prove the following trigonometric identities. a) secx-cosx:sinxtanx sinx cosx-sinzx cosx -7-coszx cosx - sinxtsnx=sin*, - b) l+sinr cosr I - c) - cos2 x cos x = SeC.r - cosx cosx l-sinrc (7+ sinx)(1- sinx) + sinx cosx sinZr :-: I cosx 1 - cosx cosx(7 rI + . - sinx) l- sin2 cosx(1 x x - sinx) cos2 - sinx) cosx(7 cos x l-.sinx COSX .sin2 x _ 7.- cos2 x _ (1+ cosx)(7- cosx) I-cosx l-cosx l-cosx = I + cosx tan x)z :2 seczx (1 + tan xf + (7 - tan xF = 7 + 2 tan x + tan2 x + 1 - 2 tan x + tsnZ x = 2(7 + tanz x) = 2 (1 + tan n)(1 * tan x) (1 cot x)(1 cot rc) _ 1*tan4x d) (l + tan x)2 + (1 el - + - tan2 secz x x xfl - tan x) - (7 + cot x)(1 - cot x) = 7 - tan2 x - (7 - cot2 x) = cotz x - tan2 * = -4- - tqn2 * =' -i;^i:- (1 + tan , 4 I O Gu€rin, editeur ltee I - 5.8 Trigonometric identities 247
© Copyright 2026 Paperzz