Institut für Physikalische und Theoretische Chemie Quantum state selective detection of molecular chlorine by high-resolution cavity ring-down spectroscopy Thomas Forsting, Ignacio Vespoli, Mathias Piescheck, Christof Maul Technische Universität Braunschweig | Institut für Physikalische und Theoretische Chemie [email protected] | Telefon +49 (0) 531 391-5345 Experimental Setup and Parameters Introduction State resolved detection of nascent products of chemical reactions and/ or photodissociation provides valuable information about the dynamics of the underlying elementary processes. Due to the lack of suitable optical detection methods molecular elimination processes of the diatomic halogens have only rarely been studied.[1, 2] For chlorine in particular no such data exist up to date. general scheme of our CRD-setup: experimental parameters: general: - temperature: T = r. t. (approx. 293 K) - gas pressure: 30 mbar Cl2 in N2, He, CO2 (up to 970 mbar) 308 nm DAQ-system A promising candidate for state-specific detection of molecular chlorine as nascent photoproducts from an elementary chemical reaction is the (spin-forbidden) transition B3P(0u+) f X1Sg+. Its weak, rovibrationally resolved bands lie in the visible range with absorption cross-sections of about 10-21 to 10-22 cm2.[3] XeCl-eximer dye laser PMT photomultiplier CRD-chamber MFC 200 sccm/N2 vacuum perturber gas MFC Cl2 50 sccm/N2 Cl2-Background Information UV/Vis (0.2 nm) - and BBCEAS (0.05 nm)[3] Spectra: 25 1 C Πu Cl+Cl B 3Π 0 +u 2 Cl+Cl A 3Π 1u 2 * 1 energy / 104 cm-1 energy / eV 3 1 1 + X Σg 0 1.8 2.4 3.0 3.6 R (Cl-Cl) / angstrom 4.2 20 15 10 Cl2: 57.4 %, 35 37 Cl Cl: 36.7 % 37 Cl2 5.9 % (natural abundance) 35 0,016 0,014 0,012 0,010 0,004 0,002 530 540 550 560 570 wavelength / nm 5 0 200 300 400 500 600 700 wavelength / nm P(32) 2,0 1,0 0,5 0,0 510,0 510,5 19596 511,0 wavelength / nm 19584 19572 19560 wavenumber / cm -1 511,5 512,0 P(30) P(31) 2,0 R(34) 1,5 19608 2,5 R(32) R(33) P(28) P(29) R(31) 0,5 19550 19536 19560 19570 19580 -1 We present experimentally observed spectra with a spectral resolution of 0.0006 nm which contain lines of all the three isotopologues 35Cl2, 35Cl37Cl and 37Cl2 according to their natural abundance. Simulation was carried out with spectroscopic constants taken from [7] and [8] and the peak assignment of measured data is still in progress, thus line assignment above is still tentative. In conclusion, we present a quantum state resolved spectrum of molecular chlorine with the highest resolution known to date. Our measurements of molecular chlorine exeed the best known spectral resolution (0.04 nm)[9] by a factor of about 60. For the first time, perturber-gas broadening coefficients for chlorine are reported. Our results comply with self-broadening coefficients of Cl2 in the literature. The current detection limit of the setup is of the order of 1014 cm-3. [1] P.-Y. Wei, Y.-P. Chang, Y.-S. Lee, W.-B. Lee, and K.-C. Lin, J. Chem. Phys. 126, 034311 (2007). [2] S.-Y. Chen, P.-Y. Tsai, H.-C. Lin, C.-C. Wu, K.-C. Lin, B.J. Sun, and A.H.H. Chang, , J. Chem. Phys. 134, 034315 (2011). [3] I.A.K. Young, C. Murray, C.M. Blaum, R.A. Cox, R.L. Jones, and F.D. Pope, Phys. Chem. Chem. Phys. 13, 15318 (2011). [4] R. C. Weast (ed.), CRC Handbook of Chemistry and Physics, 61st edition, Florida: CRC Press (1980-1981). [5] D. Zhang, A. Abdel-hafiez, B. Zhang, Chem. Phys. Lett. 428, 49 (2006). wL = 0.109(6) cm-1 (FWHM) 0,6 19577,0 19577,2 19577,4 19577,6 19577,8 N2 He CO2 0,16 0,12 0,08 0,04 0,00 0 200 400 600 800 1000 pressure / mbar B3P(0u+) (v‘ = 10) f X1Sg+(v“ = 0) Discussion and Conclusion 0,9 0,20 1,0 0,0 19540 1,2 0,24 R(28) 1,5 wavenumber / cm 19548 R(29) R(30) double-voigt fit - linear fit of wL over the pressure result into perturber-gas coefficients g: P(26) P(27) + 120 mbar N2 1,5 wavenumber / cm-1 line width (FWHM) / cm-1 2,5 absorption cross-section / 10-22 cm2 absorption cross-section / 10-22 cm2 this work Young et al. (2011)[3] 30 mbar Cl2 0,3 19576,8 High-Resolution Spectrum (Dl = 0.0006 nm) Voigt-function: convoluted Lorentz and Gauß-function 1,8 0,006 520 12 bit / 350 MHz - pressure-broadening is Lorentz-distributed - Voigt-fit circumvents Gauß-distributed signal content (laser line-width and Doppler-broadening) by fixing wG: 0,008 0,000 510 0 isotopologues[4]: 0,018 absorption cross-section / 10-20 cm2 3 absorption cross-section / 10-20 cm2 4 data acquisition: - resolution: Pressure-Broadening cavity loss (c )-1 / 10-4 cm-1 potential energy curves[5]: laser & optics: - pump source: XeCl (308 nm) @ 20 Hz - dye range: approx. 485 - 546 nm - laser band-width: 0.2cm-1 - mirror reflectivity: 0.9998 perturber-gas broadening coeffcients of chlorine: g (Cl2, N2) = 0.165(2) cm-1/barCl2-self-broadening coefficient:[6] g (Cl2, He) = 0.137(9) cm-1/bar g(Cl2) = 0.203(8) cm-1/bar g (Cl2, CO2) = 0.159(4) cm-1/bar The obtained absorption cross-sections are fully consistent to those reported in literature.[3, 9] Altogether, we show that CRD spectroscopy is a powerful and yet very easy method to obtain high resolution gas-phase absorption spectra of species with very low absorption cross-sections. The results are a proof of concept and a preliminary work on the way to the measurement of the dynamics of nascent chlorine. [6] K. K. Innes, S. J. Jackling, III, T. W. Tolbert, J. Quant. Spectrosc. Radiat. Transfer. 16, 443 (1976). [7] G. Herzberg, K. P. Huber: Constants of Diatomic Molecules. New York, London: Van Nostrand Reinhold (1979). [8] J. A. Coxon, J. Mol. Spec. 82, 264 (1980). [9] D. Maric, J. P. Burrows, R. Meller, and G. K. Moortgat, J. Photochem. Photobiol. A: Chem. 70, 205 (1993).
© Copyright 2026 Paperzz