Name: ________________________________ Calculus Derivative Practice Find the derivatives of the given functions, and simplify. 1. f ( x ) = sin x 2 4. y = tan x 7. f ( x ) = ( sin x ) 10. 4 f ( x ) = ⎡ cos ( 5x + 3 ) ⎤ ⎣ ⎦ 5 ( f ( x ) = cos ( 2x ) 3 2. ) (t 3 5 ) 4 6. 8. y = sin (13x ) 9. k (x) = 3 1 + x 11. f (z) = 12. s (t) = 14. G ( x ) = ( 3x − 2 ) 15. y = 1 + cos x 17. y = x +1 x +2 18. ⎛x⎞ y = csc ⎜ ⎟ ⎝3⎠ 2 21. y = sin ( cos ( 4x ) ) 24. y = cos sin x 9 1 5 2z − 1 y = ( 2x − 5 ) 8x − 5 19. y = sec ( 2x ) − tan ( 2x ) 20. y = cot 1 + x 22. y = sin ( sin ( sin x ) ) 23. y= x+ x+ x 25. 3 3 f ( x ) = ⎡ x + ( 2x − 1 ) ⎤ ⎣ ⎦ 28. ( 4 2 2 ) −3 2 v=x x+ 3 26. 10 ( 2 2 3 y= 1 x 3 y = 2x sin ( 3x ) 16. −7 2 5. g ( t ) = 6t + 5 3 f (x) = 9 − x ⎛ 2 1⎞ y = ⎜x − ⎟ x⎠ ⎝ 13. 2 3. ) 3 (5x 2 − x +1 ) 12 2 3 4 t +1 3 t −1 ( 2 ) 6 2 ( 2 ) 2 x 27. sin x + cos x y= x tan x sec x x For the following, find the equation of the tangent line to the function at the given point. 2 29. y = 25 − x 31. ⎛ πx 2 y = tan ⎜⎜ ⎝ 4 3 at ( −3, 4 ) ⎞ ⎟⎟ at (1,1 ) ⎠ 30. ⎛ x ⎞ y=⎜ ⎟ at ( 2, 8 ) ⎝ x −1 ⎠ 32. ⎛π ⎞ y = sin x + cos 2x at ⎜ ,1 ⎟ ⎝6 ⎠ 33. Find all points on the graph of the function f ( x ) = 2 sin x + sin x at which the tangent line is horizontal. 34. Suppose that F(x) = f(g(x)) and g(3) = 6, g’(3) = 4, f’(3) = 2, and f’(6) = 7. Find F’(3). 35. The curve y = 2 1 (1 + x ) 2 is called a witch of Agnesi. Find an equation of the tangent line to this curve at 1⎞ ⎛ the point ⎜ −1, ⎟ . 2⎠ ⎝ 36. How many tangent lines to the curve y = lines touch the curve? x x +1 pass through the point (1, 2)? At which points do these tangent Find the equation of the normal line to the curve at the given point. The normal line to a curve C at a point P is the line that passes through P and is perpendicular to the tangent line to C at P. 37. y =1− x 2 at ( 2 , −3 ) 38. y= 1 x −1 at ( 2,1 )
© Copyright 2026 Paperzz