Integration By Parts Alvin Lin Calculus II: August 2016 - December 2016 Integration By Parts Product Formula: d (f g) = f g 0 + f 0 g dx Integrate on both sides: f g 0 dx + Z f 0 gdx f g 0 dx = f g − Z f 0 gdx Z Z fg = Z Z Or with uv as variables: udv = uv − vdu For difficult integrals, this method can be used to rewrite the integral into an friendlier form. Practice problem 1 Z x cos(5x)dx Let : f (x) = x g 0 (x) = cos(5x)dx f 0 (x) = dx g(x) = 1 sin(5x) 5 Z Z f g 0 dx = f g − Z f 0 gdx x sin(5x) 1 Z x cos(5x)dx = − sin(5x)dx 5 5 x sin(5x) 1 cos(5x) − (− )+C = 5 5 5 1 1 = x sin(5x) + cos(5x) + C 5 25 Practice problem 10 Z √ ln( x)dx 1Z 1Z ln(x)dx = 1 ln(x)dx 2 2 Let : g 0 (x) = 1dx f (x) = ln(x) g(x) = x f 0 (x) = Z 1 dx x Z √ 1 1 x ln(x) − x dx ln( x)dx = 2 x Z 1 x ln(x) − 1dx 2 x ln(x) − x +C = 2 Practice problem 12 Z Z tan−1 2udu tan−1 2udu = Z 1 tan−1 2udu Let : g 0 (u) = 1du f (u) = tan−1 2u g(u) = u f 0 (u) = 2 2 1 du 1 + 4u2 2u du 1 + 4u2 After using integration by parts, we can solve the new integral with usubstitution. Z 2u du 1 + 4u2 Z −1 tan −1 2udu = u tan 2u − Z Let : x = 1 + 4u2 dx = 8udu Z 2u dx x 8u 1 Z dx 4 x 1 ln(x) + C 4 = Therefore: 1 ln(1 + 4u2 ) + C 4 Z tan−1 2udu = u tan−1 2u − 1 ln(1 + 4u2 ) + C 4 Practice problem 32 (ln(x))2 dx x3 Z 2 1 Let : u = ln(x) eu = x The limit of the integral from 1 to 2 changes to e1 to e2 eu du = dx Z e2 e = Z e2 u2 eu du (eu )3 u2 e−2u du e 3 Now we can use integration by parts: Let : f (x) = u2 g 0 (x) = e−2u e−2u −2 f 0 (x) = 2udu g(x) = Z e2 u2 e−2u du = u2 e Z e−2u e−2u du − 2u −2 −2 u2 e−2u Z + ue−2u du −2 In order to solve the integral properly, you need to use integration by parts again: Let : f (x) = u g 0 (x) = e−2u du = e−2u f (x) = 1du g(x) = −2 0 u2 e−2u e−2u u2 e−2u Z + − (1) du −2 −2 −2 u2 e−2u 1 Z −2u u2 e−2u + + e du −2 −2 2 Z 1 −2u 2 −2u e du −u e + 2 e2 1 e−2u − u2 e−2u + ( ) 2 −2 2 −e4 e−2e − −2e2 e 4 e − − e2 e−2e − ( e−2e ) 4 2 2 −e4 e−2e − = −e −8e2 e−2e e−2e + e2 e−2e + 4 4 +e −4e 4 + e−2e 2 +e−2e 4 Practice problem 38 Z cos(ln(x))dx Let : u = ln(x) x = eu dx = eu du Z u cos(u)e du = Z eu cos(u)du We can describe this integral in a more general form as: I= Z eax cos(bx)dx where a and b are both 1. Using integration by parts where: f (x) = eax g 0 (x) = cos(bx)d(x) we can get: eax sin(bx) Z aeax sin(bx) − dx b b eax sin(bx) a Z ax − e sin(bx)dx b b Using integration by parts again: Z eax sin(bx) a ax − cos(bx) − cos(bx) − e ( ) − aeax ( )dx b b b b eax sin(bx) a ax a2 Z ax I = e cos(bx)dx = + 2 e cos(bx) − 2 e cos(bx)dx b b b Rewriting this: Z Z ax a2 Z ax eax e cos(bx)dx + 2 e cos(bx)dx = 2 [b sin(bx) + a cos(bx)] b b ax = 1+ a2 Z ax eax e cos(bx)dx = [b sin(bx) + a cos(bx)] b2 b2 (b2 + a2 ) Z eax cos(bx)dx = eax [b sin(bx) + a cos(bx)] 5 eax [b sin(bx) + a cos(bx)] a2 + b 2 We can apply this general form back to the original integral. I= Z eax cos(bx)dx = Z eu cos(u)du For this case: Z a=1 b=1 ex u [sin(x) + cos(x)] e cos(u)du = 1+1 ex (sin(x) + cos(x)) = 2 Practice Problem 39 Z θ3 cos(θ2 )dθ First we start with subsitution: Let : θ2 = x dx dx 2θ = = θdθ dθ 2 Z 1Z 2 2 x cos(x)dx θ cos(θ )θdθ = 2 Then we can use integration by parts: Z x cos(x)dx Let : u = x dv = cos(x)dx du = dx v = sin(x) x cos(x)dx = x sin(x) − Z sin(x)dx x sin(x) − cos(x) + C Now we can substitute this back: 1Z 1 x cos(x)dx = x sin(x) − cos(x) + C 2 2 1 = θ2 sin(θ2 ) − cos(θ2 ) + C 2 6 Practice Problem 44 Z 3 x 2 ln(x)dx 3 Let : u = ln(x) dv = x 2 dx 5 x2 1 du = dx v = 5 x 2 5 5 Z 3 2 x ln(x)dx = x 2 ln(x) 5 2 − Z 1 x2 dx x 52 5 2 2Z 3 ln(x)x 2 − x 2 dx 5 5 5 5 2 x2 2 ln(x)x 2 − 5 dx 5 5 2 If any errors are found, please contact me at [email protected] 7
© Copyright 2026 Paperzz