Chapter
2
Inverse Trigonometric
Functions
Domain, Range and Principal Value of Inverse Circular Functions
Function
x
[–1, 1]
Range
− π , π
2 2
Principal value branch
π
π
− ≤ y ≤ , where
2
2
y = sin −1 x
cos−1 x
[–1, 1]
[0, π]
0 ≤ y ≤ π, where y = cos−1 x
tan −1 x
R
− π, π
2 2
cosec −1 x
(−∞, − 1 ] ∪ [1, ∞)
− π , π − {0 }
2 2
sec −1 x
(−∞, − 1 ] ∪ [1, ∞)
π
[0, π] −
2
sin
−1
Domain
π
π
< y< ,
2
2
where y = tan −1 x
−
π
π
≤ y ≤ , y ≠ 0,.
2
2
where y = cosec −1 x
−
π
0 ≤ y ≤ π, y ≠ ,
2
where y = sec −1 x
cot
−1
(0, π)
R
x
0 < y < π, where y = cot −1 x
Properties of Inverse Circular Functions
1. sin −1(sin θ) = θ
2. cos −1(cos θ) = θ
3. tan −1(tan θ) = θ
4. cot −1(cot θ) = θ
−1
6. cosec −1(cosec θ) = θ
1
8. cos −1 = sec −1x
x
5. sec (sec θ) = θ
1
7. sin −1 = cosec −1x
x
1
9. tan −1 = cot −1 x
x
10. sin −1(− x) = − sin −1 x
11. cos −1(− x) = π − cos −1 x
−1
13. cot (− x) = π − cot
−1
x
12. tan −1(− x) = − tan −1 x
14. sec −1(− x) = π − sec −1x
44
www.arihantbooks.com
15. cosec −1(− x) = − cosec −1x
17. tan −1 x + cot −1 x =
π
2
16. sin −1 x + cos −1 x =
π
2
18. sec −1 x + cosec −1x =
π
2
19. sin −1 x + sin −1 y = sin −1[x 1 − y 2 + y 1 − x 2 ]
20. sin −1 x − sin −1 y = sin −1 [x 1 − y 2 − y 1 − x 2 ]
21. cos −1 x + cos −1 y = cos −1 [xy − 1 − x 2
1 − y2]
22. cos −1 x − cos −1 y = cos −1 [xy + 1 − x 2
1 − y2]
x + y
23. tan −1 x + tan −1 y = tan −1
, x > 0, y > 0 and xy < 1
1 − xy
x + y
24. tan −1 x + tan −1 y = π + tan −1
, x > 0, y > 0 and xy > 1
1 − xy
x + y
25. tan −1 x + tan −1 y = tan −1
− π, x < 0, y < 0 and xy > 1
1 − xy
x−y
26. tan −1 x − tan −1 y = tan −1
, xy > − 1
1 + xy
x−y
27. tan −1 x − tan −1 y = π + tan −1
, x > 0, y < 0 and xy < − 1
1 + xy
x−y
28. tan −1 x − tan −1 y = tan −1
− π, x < 0, y > 0 and xy < − 1
1 + xy
2
2x
−1 2 x
−1 1 − x
29. 2 tan −1 x = tan −1
sin
cos
=
=
1 − x2
1 + x2
1 + x2
30. 2 sin −1 x = sin −1(2x 1 − x 2 )
31. 2 cos −1 x = cos −1(2x 2 − 1)
32. 3 sin −1 x = sin −1(3x − 4x 3)
33. 3 cos −1 x = cos −1(4x 3 − 3x)
3x − x 3
34. 3 tan −1 x = tan −1
1 − 3x 2
x
35. sin −1 x = cos −1 1 − x 2 = tan −1
1 − x2
1 − x2
36. cos −1 x = sin −1 1 − x 2 = tan −1
x
x
1
= cos −1
37. tan −1 x = sin −1
1 + x2
1 + x2
NCERT Class XII Mathematics Solutions
45
Exercise 2.1
Direction (Q. Nos. 1 to 10) Find the principal values of the following
questions :
3
1
2. cos −1
3. cosec −1 (2)
4. tan −1 (− 3)
1. sin −1 −
2
2
2
1
−1
5. cos −1 −
6. tan −1 (−1)
7. sec −1
8. cot ( 3)
2
3
1
−1
9. cos −1 −
10. cosec (− 2)
2
Solutions for 1-10
1
1
1. Let sin −1 − = θ ⇒ sin θ = −
2
2
π π
We know that the range of principal value of sin −1 θ is − , .
2 2
1
π
π
(Qsin (− θ) = − sin θ)
∴ sin θ = − = − sin = sin −
6
2
6
π
π
π π
1
⇒
θ = − , where θ ∈ − ,
⇒ sin −1 − = −
2
6
6
2 2
π
1
Hence, the principal value of sin −1 − is − .
2
6
Note Principal value of any inverse function is unique.
3
3
2. Let cos −1
= θ ⇒ cos θ =
2
2
We know that the range of principal value of cos −1 θ is [0, π ].
3 π
3
π
π
⇒ θ = , where θ ∈[0, π] ⇒ cos −1
= cos
∴ cos θ =
=
2
6
6
2 6
3 π
Hence, the principal value of cos −1
is .
2 6
3. Let cosec −1 2 = θ ⇒ cosec θ = 2. We know that the range of principal
π
π π
value of cosec −1 θ is − ,
− {0}. cosec θ = 2 = cosec
2 2
6
π
π
π π
−1
⇒
θ = , where θ ∈ − ,
− {0} ⇒ cosec (2) =
6
6
2 2
π
Hence, the principal value of cosec −1(2) is .
6
4. Let tan −1 (− 3) = θ ⇒ tan θ = − 3
π π
We know that the range of principal value of tan −1 θ is − , .
2 2
46
www.arihantbooks.com
π
π
(Qtan (− θ) = − tan θ)
= tan −
3
3
π
π
π π
⇒
θ = − , where θ ∈ − , ⇒ tan −1 (− 3) = −
2 2
3
3
π
−1
Hence, principal value of tan (− 3) is − .
3
∴
tan θ = − 3 = − tan
1
1
5. Let cos −1 − = θ ⇒ cos θ = −
2
2
We know that the range of principal value of cos −1 θ is [0, π].
1
π
π
(Qcos (π − θ) = − cos θ)
∴ cos θ = − = − cos = cos π −
2
3
3
2π
= cos
3
2π
1 2π
; where θ ∈[0, π] ⇒ cos −1 − =
θ=
⇒
2
3
3
1 2π
.
Hence, principal value of cos −1 − is
2
3
Note cos −1 (− θ) ≠ − cos −1 θ
6. Let tan −1 (−1) = θ ⇒ tan θ = − 1
π π
We know that the range of principal value of tan −1 θ is − , .
2 2
π
π
(Qtan (− θ) = − tan θ)
∴
tan θ = − 1 = − tan = tan −
4
4
π
π
π π
∴ tan −1(−1) = −
θ = − ; where
θ ∈− ,
⇒
2 2
4
4
π
Hence, the principal value of tan −1 (−1) is − .
4
2
−1 2
7. Let sec
= θ ⇒ sec θ =
3
3
π
We know that the range of principal value of sec −1 θ is [0, π ] − .
2
2
π
π
π
∴
sec θ =
= sec
⇒ θ = , where θ ∈ [0, π ] −
6
6
3
2
π
−1 2
⇒
sec
=
3 6
2 π
Hence, the principal value of sec −1
is .
3 6
NCERT Class XII Mathematics Solutions
47
8. Let cot −1 ( 3) = θ ⇒ cot θ = 3
We know that the range of principal value of cot −1 θ is (0, π ).
π
π
π
∴ cot θ = 3 = cot ⇒ θ = ; where θ ∈(0 , π ) ⇒ cot −1 ( 3) =
6
6
6
π
Hence, the principal value of cot −1 ( 3) is .
6
1
1
−1
9. Let cos −
= θ ⇒ cos θ = −
2
2
We know that the range of principal value of cos −1 θ is [0, π].
1
π
π
[Qcos(π − θ) = − cos θ)]
∴
cos θ = −
= − cos = cos π −
4
4
2
3π
1 3π
, where θ ∈[0, π] ⇒ cos −1 −
θ=
⇒
=
4
4
2
1 3π
−1
.
Hence, the principal value of cos −
is
4
2
10. Let cosec −1 (− 2) = θ
We know that the range of principal value of cosec −1 θ is
π π
− ,
− {0}.
2 2
π
π
∴ cosec θ = − 2 = − cosec = cosec − (Qcosec (−θ) = − cosec θ)
4
4
π
π
π π
⇒
− {0} ⇒ cosec −1(− 2) = −
θ = − , where θ ∈ − ,
2 2
4
4
π
−1
Hence, the principal value of cosec (− 2) is − .
4
Direction (Q. Nos. 11 to 14) Find the values of the following questions :
1
1
Question 11. tan −1 (1) + cos −1 − + sin −1 −
2
2
Given expression is not a standard identity, so we separately find the
1
1
value of tan−1 ( 1), cos −1 − , sin−1 − and simplify it.
2
2
Solution Let tan −1(1 ) = x ⇒ tan x = 1 = tan
π
π
⇒x =
4
4
π
π π
where principal value x ∈ − ,
∴ tan −1 (1) =
2 2
4
1
π
π
2π
−1 1
Let cos − = y ⇒ cos y = − = − cos = cos π − = cos
2
3
3
2
3
(Qcos (π − θ) = − cos θ)
2π
, where principal value y ∈[0, π ]
⇒
y=
3
48
www.arihantbooks.com
∴
1 2π
cos −1 − =
2
3
Let
⇒
∴
∴
1
1
π
π
sin −1 − = z ⇒ sin z = − = − sin = sin −
2
6
6
2
π
π π
z = − , where principal value z ∈ − ,
2 2
6
π
1
sin −1 − = −
2
6
π 2π π
1
1
tan −1 (1) + cos −1 − + sin −1 − = x + y + z = +
−
2
2
4
3
6
3π + 8π − 2π 9π 3π
=
=
=
12
12
4
1
1
Question 12. cos −1 + 2 sin −1
2
2
Solution We can find the value of given expression by simplifying the
individual terms.
1
π
1
cos −1 = x ⇒ cos x = = cos
2
2
3
π
(principal interval)
x = ∈ [0, π]
⇒
3
1
π
1
Again, let
sin −1 = y ⇒ sin y = = sin
2
2
6
π π π
(principal interval)
y= ∈ − ,
⇒
6 2 2
π
π 2π
1
1
cos −1 + 2 sin −1 = x + 2y = + 2 × =
∴
2
2
3
6
3
Let
Question 13. If sin −1 x = y, then
(a) 0 ≤ y ≤ π
(b) −
π
π
≤ y≤
2
2
π
π
< y<
2
2
π
π
π π
, therefore − ≤ y ≤ .
,
2
2
2 2
(c) 0 < y < π
Solution (b) As range of sin −1 x is −
(d) −
Hence, the correct option is (b).
Question 14. tan −1 3 − sec−1 ( −2) is equal to
(a) π
Solution
⇒
2π
3
π
(b) Let tan −1 3 = x ⇒ tan x = 3 ⇒ tan x = tan
3
π π π
(principal interval)
x = ∈− ,
3 2 2
(b) −
π
3
(c)
π
3
(d)
NCERT Class XII Mathematics Solutions
Let
sec −1 (−2) = y
⇒ sec y = − 2
sec y = − sec
⇒
49
π
π
⇒ sec y = sec π −
3
3
[Qsec (π − θ) = − sec θ]
2π
2π
π
sec y = sec ⇒ y =
∈ [0, π] −
3
2
3
π 2π
π
∴
tan −1 3 − sec −1(−2) = x − y = −
=−
3
3
3
Hence, the correct option is (b).
⇒
(principal interval)
Exercise 2.2
Direction (Q. Nos. 1 to 4)
Prove the following questions :
Question 1. 3 sin −1 x = sin −1 ( 3 x − 4 x3 ), x ∈ − ,
2 2
1 1
The right hand side of a given expression can be converted into a
standard formula sin 3θ when we substitute sin−1 x as θ and then applying
the formula sin 3 θ = 3 sin θ − 4 sin3 θ.
Solution Let sin −1 x = θ ⇒ x = sin θ, then
LHS = 3 sin −1 x = 3 sin −1 (sin θ) = 3 θ
RHS = sin −1 (3x − 4x 3) = sin −1 [3 sin θ − 4 sin 3 θ] = sin −1 [sin 3θ] = 3 θ
[Qsin 3 θ = 3 sin θ − 4 sin 3 θ]
LHS = RHS,
Hence proved.
∴
1
−1
−1
3
Question 2. 3 cos x = cos (4 x − 3 x), x ∈ , 1.
2
The right hand side of a given expression can be converted into a
standard formula cos 3θ when we substitute cos −1 x as θ and then
applying the formula cos 3 θ = 4 cos 3 θ − 3 cos θ.
Solution Let x = cos θ
LHS = 3 cos −1 x = 3 cos −1 (cos θ) = 3 θ
RHS = cos −1 (4x 3 − 3x) = cos −1 [4 cos 3 θ − 3 cos θ] = cos −1 [cos 3θ] = 3 θ
[Qcos 3 θ = 4 cos 3 θ − 3 cos θ]
∴
LHS = RHS,
2
7
1
+ tan −1
= tan −1
11
24
2
1
−1 2
−1 7
Given, tan
+ tan
= tan −1
11
24
2
Question 3. tan −1
Solution
Hence proved.
50
www.arihantbooks.com
7
2
+
2
7
LHS = tan −1 + tan −1 = tan −1 11 24
11
24
1 − 2 . 7
11 24
x + y
Q tan −1 x + tan −1 y = tan −1
1 − xy
48 + 77
125
−1
−1
264
= tan
= tan 264 = tan
−
14
264
14
1−
264
264
−1
125 264
−1 1
= RHS.
= tan −1
×
= tan
264 250
2
125
264
250
264
Hence proved.
1
1
31
Question 4. 2 tan −1 + tan −1 = tan −1
2
7
17
2x
so that we can applying
Firstly we use the identity 2 tan−1 x = tan−1
2
1 − x
A+ B
tan−1 ( A) + tan−1 ( B) = tan−1
to get the required result.
1 − AB
1
1
31
Solution Given, 2 tan −1 + tan −1 = tan −1
2
7
17
2×1
1
1
2 + tan −1 1
LHS = 2 tan −1 + tan −1 = tan −1
2
7
2
7
1
1 −
2
= tan −1
1
2x
Q2 tan −1 x = tan −1
1 − x2
1
4
1
= tan −1 + tan −1
3
7
7
+ tan −1
1
1−
4
4 1
+
x + y
= tan −1 3 7
Q tan −1 x + tan −1 y = tan −1
4
1
1 − xy
1 − ×
3 7
28 + 3
31
21
31
−1 31
−1
−1 21
21
= tan
× = tan −1 = RHS
= tan = tan
4
17
17
21 17
1−
21
21
Hence proved.
NCERT Class XII Mathematics Solutions
51
Direction (Q. Nos. 5 to 10) Write the following functions in the simplest
form.
Question 5. tan −1
1 + x2 − 1
,x≠0
x
To remove the square root sign, we substituting x as tan θ and simplify it.
Solution Let x = tan θ, then θ = tan −1 x
∴
tan −1
1 + tan θ − 1
1+ x − 1
= tan −1
= tan −1
tan θ
x
2
2
…(i)
sec θ − 1
tan θ
[Q1 + tan 2 θ = sec 2 θ]
2
sec θ − 1
= tan −1
tan θ
1
1 − cos θ
−1
cos θ
−1 cos θ
−1 cos θ
−1 1 − cos θ
= tan
= tan
= tan cos θ × sin θ
sin
in
θ
θ
s
cos θ
cos θ
θ
θ
2 sin 2
Q1 − cos θ = 2 sin 2
−1 1 − cos θ
−1
2
2
= tan
= tan
sin θ
θ
θ
θ
θ
2 sin cos
and sin θ = 2 sin cos
2
2
2
2
θ
2 sin
−1
2 = tan −1 tan θ = θ = tan x
[from Eq. (i)]
= tan −1
θ
2 2
2
2 cos
2
tan −1
∴
Question 6. tan −1
1
x −1
2
1 + x2 − 1 1
= tan −1 x
x
2
, |x| > 1
Substitute x as sec θ to remove the square root sign and simplify it.
Solution Let x = sec θ, then θ = sec −1 x
∴
tan −1
…(i)
1
1
= tan −1
= tan −1
sec 2 θ − 1
tan 2 θ
x2 − 1
1
(Qsec 2 θ − tan 2 θ = 1)
1
π
π
−1
−1
= tan −1
= tan (cot θ) = tan tan − θ (Qtan − θ = cot θ)
2
tan θ
2
52
www.arihantbooks.com
=
π
π
− θ = − sec −1 x
2
2
[from Eq. (i)]
1 − cos x
, x < π
1 + cos x
Question 7. tan −1
Applying the formula 1 − cos x = 2sin2( x / 2) and 1 + cos x = 2cos 2( x / 2) to
remove the square root sign and simplify it.
2 sin 2(x / 2)
1 − cos x
= tan −1
2
1 + cos x
2 cos (x / 2)
Solution tan −1
1 − cos x = 2 sin 2(x / 2)
Q
and 1 + cos x = 2 cos 2(x / 2)
x
x x
= tan −1 tan 2 = tan −1 tan =
2
2 2
Note If x is positive, then
tan 2
tan 2
x
x
= tan and if x is negative, then
2
2
x
x
= − tan .
2
2
cos x − sin x
, 0 < x < π
cos x + sin x
Question 8. tan −1
First we convert the angle of given function in tan θ so that we use the
identity. For this we have change the angle of numerator and
denominator in terms of tan x and then using the formula
tan a − tan b
tan( a − b) =
1 + tan a tan b
cos x sin x
−
x − sin x
−1 cos x
cos x
Solution tan
= tan
cos
x
sin
x
cos x + sin x
+
cos x cos x
(inside the bracket divide numerator and denominator by cos x)
1 − tan x
π
−1
= tan −1
= tan tan − x
1 + tan x
4
−1 cos
π
tan − tan x
1 − tan x
π
4
=
Q tan 4 − x =
π
1 + tan ⋅ tan x 1 + tan x
4
=
π
−x
4
NCERT Class XII Mathematics Solutions
Question 9.
x
tan −1
a 2 − x2
53
, |x| < a
Substitute x as a sin θ to remove the sqrare root sign and then use the
identity.
Solution Let x = a sin θ ⇒
∴
tan −1
x
a2 − x 2
x
x
= sin θ ⇒ sin −1 = θ
a
a
…(i)
a sin θ
= tan −1
a2 − a2 sin 2 θ
a sin θ
= tan −1 sin θ
= tan −1
a 1 − sin 2 θ
cos θ
sin 2 x + cos 2 x = 1
Q
2
⇒ cos x = 1 − sin x
x
= tan −1(tan θ) = θ = sin −1
a
[from Eq. (i)]
3 a 2 x − x3
−a
a
≤x≤
, a > 0;
3
3
a 3 − 3 ax2
Question 10. tan −1
The angle of given function can be converted into standard result of
tan 3 θ by putting x = a tan θ, so that we use the identity tan−1 (tan θ) = θ,
3tan θ − tan3 θ
where, tan 3 θ =
1 − 3tan2 θ
Solution Let x = a tan θ
⇒
∴
x
x
= tan θ ⇒ θ = tan −1
a
a
… (i)
3a2x − x 3
3a2(a tan θ) − (a tan θ)3
tan −1 3
= tan −1
2
a3 − 3a(a tan θ)2
a − 3ax
a3(3 tan θ − tan 3 θ)
= tan −1
a3(1 − 3 tan 2 θ)
3 tan θ − tan 3 θ
= tan −1
= tan −1(tan 3θ)
1 − 3 tan 2 θ
3 tan θ − tan 3 θ
Q tan 3θ =
1 − 3 tan 2 θ
x
= 3θ = 3 tan −1
a
[from Eq.(i)]
54
www.arihantbooks.com
Direction (Q. Nos. 11 to 15) Find the value of each of the following
questions :
1
Question 11. tan −1 2 cos 2 sin −1 .
2
1
π
Solution tan −1 2 cos 2 sin −1 = tan −1 2 cos 2 sin −1 sin
2
6
π 1
Q sin =
6 2
π
π
= tan −1 2 cos 2 × = tan −1 2 cos
6
3
1
π 1
= tan −1 2 ×
= tan −1(1)
Qcos =
2
3 2
π
π
π
= tan −1 tan =
Q tan = 1
4 4
4
Question 12. cot (tan −1 a + cot −1 a).
π
π
−1
−1
=0
Q tan x + cot x =
2
2
2
1
2x
1− y
+ cos −1
tan sin −1
, |x| < 1, y > 0 and xy < 1
2
1 + x2
1 + y2
Solution cot (tan −1 a + cot −1 a) = cot
Question 13.
The angle of tan is converted into a tan−1 x by using the standard relation
so that we use the identity tan (tan−1 θ) = θ. For this we have to use the
2x
1 − x2
= cos −1
relation 2 tan−1 x = sin−1
2
2
1 + x
1 + x
1
2x
1 − y2
Solution tan sin −1
+ cos −1
2
1 + x2
1 + y2
1 − y2
2x
−1
−1
and 2 tan −1 y = cos −1
Q2 tan x = sin
2
1 + x
1 + y2
1
1
= tan (2 tan −1 x + 2 tan −1 y) = tan × 2 (tan −1 x + tan −1 y)
2
2
−1
−1
= tan (tan x + tan y)
x + y x + y
x+y
= tan tan −1
Q tan −1 x + tan −1 y = tan −1
=
1 − xy 1 − xy
1 − xy
Question 14. If sin sin −1
1
+ cos −1 x = 1, then find the value of x.
5
Solution Given, sin sin −1
1
+ cos −1 x = 1
5
NCERT Class XII Mathematics Solutions
⇒
sin −1
⇒
sin −1
⇒
sin −1
⇒
⇒
55
1
+ cos −1 x = sin −1 1
5
1
π
+ cos −1 x = sin −1 sin
5
2
[Qsin θ = x ⇒θ = sin −1 x]
1
π
+ cos −1 x =
⇒ sin −1
5
2
1
sin −1 = sin −1 x
5
1
=x
5
1 π
= − cos −1 x
5 2
π
Q sin −1 x + cos −1 x =
2
π
Q sin 2 = 1
x −1
x +1 π
+ tan −1
= , then find the value of x.
x−2
x+ 2 4
x −1
x+1 π
Solution Given tan −1
+ tan −1
=
x −2
x+2 4
x −1 x + 1
+
x + y
x −2 x + 2 π
−1
⇒ tan
Q tan −1 x + tan −1 y = tan −1
=
1 − xy
x − 1 x + 1 4
1 −
x − 2 x + 2
(x − 1) (x + 2) + (x + 1)(x − 2)
(x − 2)(x + 2)
=π
tan −1
⇒
(x − 2) (x + 2) − (x − 1)(x + 1) 4
(x − 2)(x + 2)
(x − 1) (x + 2) + (x + 1) (x − 2)
π
= tan
⇒
(x − 2) (x + 2) − (x − 1) (x + 1)
4
2x 2 − 4
π
⇒
=1
Q tan = 1
4
(x 2 − 4) − (x 2 − 1)
1
1
2
2
2
⇒ x=±
⇒
2x − 4 = − 3 ⇒ 2x = 1 ⇒ x =
2
2
Direction (Q. Nos. 16 to 18) Find the values of each of the expressions.
Question 15. If tan −1
Question 16. sin −1 sin
Since,
sin
the
range
2π
3
of sin−1 x
is
− π , π
2 2
so,
firstly
2π
π
= sin π − and then use the identity sin−1 (sin θ) = θ.
3
3
Solution sin −1 sin
we
write
2π
π
π
−1
−1
= sin sin π − = sin sin
3
3
3
[Q sin (π − θ) = sin θ]
56
www.arihantbooks.com
π
π π
which lies in the range − , .
2 2
3
π π
Note sin −1(sin θ) = θ is only when θ ∈ − , .
2 2
3π
Question 17. tan −1 tan
4
π
3
π
π
Solution tan −1 tan = tan −1 tan π − = tan −1 − tan
4
4
4
[Qtan (π − θ) = − tan θ]
π
−1
[Q− tan θ = tan (−θ)]
= tan tan −
4
π
π π
= − which lies in the range − , .
2 2
4
=
Question 18. tan sin −1
3
3
+ cot −1
5
2
The angle of tan be converted into tan−1 so that we can use the identity
3
3
tan (tan−1 θ) = θ, for this we have to convert sin−1 and cot −1 to tan−1 θ
5
2
a+ b
and applying the formula tan−1 a + tan−1 b = tan−1
.
1 − ab
Solution tan sin −1
3
+ cot −1
5
3
3
2
−1
5
+ tan −1
⇒ tan tan
2
2
3
3
1−
5
x
x
y
and cot −1 = tan −1
Q sin −1 x = tan −1
y
x
1 − x2
3 2
17
+
4 3
3
2
−1
= tan tan −1 + tan −1
= tan tan −1
= tan tan 12
3
2
1
4
3
1− ×
4 3
2
−1
−1
−1 x + y
Q tan x + tan y = tan 1 − xy
17
−1 17
= tan tan
=
6 6
Question 19. cos −1 cos
(a)
7π
6
(b)
5π
6
7π
is equal to
6
π
(c)
3
(d)
π
6
NCERT Class XII Mathematics Solutions
57
7π
according to the interval [ 0, π] i.e., by
6
using cos θ = cos( 2 π − θ) and then use the identity cos −1 (cos θ) = θ.
First we reduce the quantity
7π
5π
−1
= cos cos 2π −
6
6
∴
7π
5π 5π
cos −1 cos = cos −1 cos =
6 6
6
Solution (b) cos −1 cos
where,
5π
∈[0, π]
6
[Q cos (2π − θ) = cos θ]
Hence, the correct option is (b).
1
π
Question 20. sin − sin −1 − is equal to
3
2
1
1
1
(b)
(c)
(d) 1
(a)
2
3
4
π 1
1
π
π
π
Solution (d) sin − sin −1 − = sin − sin −1 − sin Q sin =
6 2
3
2
3
6
π
π
= sin − sin −1 sin −
6
3
(Qsin(− x) = − sin x)
π
π π
π π
= sin = 1
= sin − − = sin
+
3 6
2
3 6
Hence, the correct option is (d).
Question 21. tan −1 3 − cot −1 ( − 3 ) is equal to
(a) π
(b) −
π
2
(c) zero
(d) 2 3
Solution (b) tan −1 3 − cot −1(− 3)
= tan −1 3 − [π − cot −1 3]
[Qcot −1(− x) = π − cot −1 x]
= tan −1 3 − π + cot −1 3
= tan −1 3 − π + tan −1
−1 1
= cot −1 x
Q tan
x
1
3
1
= tan −1 3 + tan −1
−π
3
= tan
−1
1
3+
3
−π
1
1− 3 ×
3
= tan −1(∞) − π
−1
−1
−1 x + y
Q tan x + tan y = tan 1 − xy
58
www.arihantbooks.com
=
π
π
−π=−
2
2
π
Q tan = ∞
2
Hence, the correct option is (b).
Miscellaneous Exercise
Direction (Q. Nos. 1 and 2)
Find the value of following functions :
13 π
.
6
13π
π
π
−1
Solution cos −1 cos
= cos cos 2π + ; where ∈[0, π]
6
6
6
[Hence, the given angle does not lie in the principal interval i.e., [0 π],
so we convert it such that it lies in [0 π].]
π π
= cos −1 cos =
[Q cos(2π + θ) = cos θ]
6 6
Question 1. cos −1 cos
Question 2. tan −1 tan
7π
6
π π π
7π
π
−1
= tan tan π + ; where ∈ − ,
6 2 2
6
6
(Principal interval)
7π
π π
−1
−1
[Qtan (π + θ) = tan θ]
tan tan = tan tan
=
6
6 6
Solution tan −1 tan
∴
Direction (Q. Nos. 3 to 12) Prove the following functions :
3
24
= tan −1
5
7
24
−1 3
Solution Given, 2 sin
= tan −1
5
7
2
3
3
3
LHS = 2 sin −1 = sin −1 2 ×
1−
5
5
5
3
4
24
= sin −1 2 × ×
= sin −1
25
5 5
Question 3. 2 sin −1
24
25
= tan −1
2
1 − 24
25
[Q2 sin −1 y = sin −1(2y 1 − y 2 )]
y
Q sin −1 y = tan −1
1 − y 2
NCERT Class XII Mathematics Solutions
24
25
24
−1 24
25
= tan
×
= tan −1
= RHS.
= tan
7
25
7
576
1−
625
8
3
77
Question 4. sin −1 + sin −1 = tan −1
17
5
36
−1
59
Hence proved.
For adding two sin−1 functions, we use the relation
sin−1 x + sin−1 y = sin−1( x 1 − y 2 + y 1 − x 2 ).
8
3
77
+ sin −1 = tan −1
17
5
36
2
2
8
3
3
8
3
8
LHS = sin −1 + sin −1 = sin −1
1− +
1−
5
17
5
17
5
17
Solution Given, sin −1
[∴sin −1 x + sin −1 y = sin −1(x 1 − y 2 + y 1 − x 2 ]
8 4 3 15
77
= sin −1
× + × = sin −1
17 5 5 17
85
77
85
= tan −1
2
1 − 77
85
77
77 85
= tan −1
×
= tan −1
= RHS.
85 36
36
x
Q sin −1 x = tan −1
1 − x 2
Hence proved.
4
12
33
+ cos −1
= cos −1 .
5
13
65
33
−1 4
−1 12
Solution Given, cos
+ cos
= cos −1
5
13
65
4
12
LHS = cos −1 + cos −1
5
13
Question 5. cos −1
2
2
4 12
4
12
= cos −1 .
− 1− 1−
5 13
5
13
[Qcos −1 x + cos −1 y = cos −1(xy − 1 − x 2 1 − y 2 ]
2
2
48
5
48 3
3 5
= cos −1
− = cos −1
− ×
65
5 13
65 5 13
3
48
33
= cos −1
− = cos −1 = RHS.
65 13
65
Hence proved.
60
www.arihantbooks.com
Question 6. cos −1
12
3
56
+ sin −1 = sin −1
13
5
65
In LHS there are the different inverse trigonometric function. So, we
12
convert cos −1
to sin−1 θ form and then use the formula
13
sin−1 x + sin−1 y = sin−1( x 1 − y 2 + y 1 − x 2 ).
12
3
56
+ sin −1 = sin −1
13
5
65
12
12
cos −1
= θ ⇒ cos θ =
13
13
Solution Given, cos −1
Let
∴
12
sin θ = 1 −
13
2
[Qsin θ = 1 − cos 2 θ ]
5
25
5
⇒ θ = sin −1
=
13
169 13
3
−1 12
−1 3
−1 5
Now,
LHS = cos
+ sin
= sin
+ sin −1
13
5
13
5
2
2
5
3
5
3
1− +
1−
= sin −1
13
13
5
5
⇒
sin θ =
[Qsin −1 x + sin −1 y = sin −1(x 1 − y 2 + y 1 − x 2 )]
5 16 3 144
56
5 4 3 12
= sin −1
+
× + × = sin −1 = RHS
= sin −1
65
13 5 5 13
13 25 5 169
Hence proved.
Question 7. tan −1
63
5
3
= sin −1
+ cos −1 .
16
13
5
5
Here, we put sin−1 = x and then convert x in terms of tan−1. Similarly
13
3
put cos −1 = y and then convert y in terms of tan−1 and then apply the
5
a+ b
formula tan−1 a + tan−1 b = tan−1
.
1 − ab
63
5
3
= sin −1
+ cos −1
16
13
5
−1 5
−1 3
RHS = sin
+ cos
13
5
5
−1 5
sin = x ⇒ sin x =
13
13
Solution Given, tan −1
Let
2
Q
5
1 − sin 2 x = cos 2 x ⇒ 1 − = cos 2 x
13
NCERT Class XII Mathematics Solutions
61
169 − 25
144
12
= cos x
= cos 2 x ⇒
= cos 2 x ⇒
169
169
13
5
sin x
5
5
13
∴
tan x =
=
⇒ tan x =
⇒ x = tan −1
12 12
cos x
12
13
3
3
Let
cos −1 = y ⇒ cos y =
5
5
2
3
Q
1 − cos 2 y = sin 2 y ⇒ 1 − = sin 2 y
5
25 − 9
16
4
⇒
= sin y
= sin 2 y ⇒
= sin 2 y ⇒
25
25
5
4
sin y
4
4
tan y =
⇒ y = tan −1
⇒ tan y = 5 =
∴
3
3
cos y
3
5
63
∴ Given equation becomes tan −1
=x+y
16
63
4
5
⇒ tan −1
= tan −1 + tan −1
3
12
16
⇒
4
5
+
5
4
RHS = tan −1 + tan −1 = tan −1 12 3
∴
5 4
12
3
×
1 −
12 3
−1
−1
−1 x + y
Q tan x + tan y = tan 1 − xy
15 + 48
12 × 3
36
63
−1 63
= LHS
= tan −1
×
= tan −1
= tan
16
×
−
12
3
20
36 36 − 20
12 × 3
LHS = RHS.
Hence proved.
∴
1
1
1
1
π
Question 8. tan −1 + tan −1 + tan −1 + tan −1 =
5
7
3
8 4
We do not add all tan−1 x function one at a time, so we make a pair and
x + y
use the formula tan−1 x + tan−1 y = tan−1
.
1 − xy
1
1
+ tan −1 +
5
7
1
−1 1
+ tan
+
5
7
Solution Given, tan −1
LHS = tan −1
1
1 π
+ tan −1 =
3
8 4
1
−1 1
+ tan −1
tan
3
8
tan −1
62
www.arihantbooks.com
1 1
1 1
+
+
= tan −1 5 7 + tan −1 3 8
1 − 1 × 1
1 − 1 × 1
5 7
3 8
−1
−1
−1 x + y
Q tan x + tan y = tan 1 − xy
8+ 3
7+ 5
6
11
= tan −1 35 + tan −1 24 = tan −1 + tan −1
35
1
24
1
−
−
23
17
24
35
11
6
+
−1 6 × 23 + 11 × 17
17
23
= tan
+ tan
6
11
17 × 23 − 6 × 11
1 −
×
17 23
−1
π
325
−1
= tan −1
= tan 1 = = RHS.
325
4
Question 9. tan −1 x =
Hence proved.
1 − x
1
cos −1
, x ∈[ 0, 1].
1 + x
2
1
2
1 − x
, x ∈[0, 1]
1 + x
Solution Given, tan −1 x = cos −1
LHS = tan −1 x =
1
1 − ( x )2
1
× (2 tan −1 x ) = × cos −1
2
2
1 + ( x )2
2
−1
−1 1 − x
Q2 tan x = cos
1 + x2
=
1 − x
1
cos −1
= RHS.
1 + x
2
Hence proved.
1 + sin x + 1 − sin x x
π
= , x ∈ 0,
4
1 + sin x − 1 − sin x 2
Question 10. cot −1
To remove the square root sign, we use the identity 1 = sin2
x
x
the relation sin x = 2 sin ⋅ cos and also use the identities
2
2
x
x
+ cos 2 and
2
2
( a + b) 2 = a2 + b2 + 2ab and ( a − b) 2 = a2 + b2 − 2ab.
1 + sin x + 1 − sin x x
π
= , x ∈ 0,
4
1 + sin x − 1 − sin x 2
Solution Given, cot −1
NCERT Class XII Mathematics Solutions
1 + sin x + 1 − sin x
LHS = cot −1
1 + sin x − 1 − sin x
63
…(i)
Now, we can write
1 + sin x = sin 2
x
x
x
x
x
x
+ cos 2 + 2 sin cos = sin + cos
2
2
2
2
2
2
2
x
x
x
x
Q sin 2 + cos 2 = 1 and sin x = 2 sin cos
2
2
2
2
x
x
⇒
1 + sin x = sin + cos
2
2
x
x
Similarly, we can get 1 − sin x = cos − sin
2
2
On substituting above two values in Eq. (i) , we get
x
x
x
x
x
sin + cos + cos − sin
2 cos
−
1
−1
2
2
2
2
2 = cot
LHS = cot
sin x + cos x + sin x − cos x
2 sin x
2
2
2
2
2
x x
= cot −1 cot = = RHS
2 2
Alternative method
1 + sin x + 1 − sin x
LHS = cot −1
1 + sin x − 1 − sin x
1 + sin x + 1 − sin x
1 + sin x + 1 − sin x
= cot −1
×
+
−
−
+ sin x + 1 − sin x
sin
sin
1
x
1
x
1
(by rationalyzing denominator)
( 1 + sin x + 1 − sin x )2
= cot −1
2
( 1 + sin x) − ( 1 − sin x )2
1 + sin x + 1 − sin x + 2 1 − sin 2 x
= cot −1
1 + sin x − 1 + sin x
= cot −1
2 + 2 cos x
[Q cos 2 x + sin 2 x = 1 ⇒ cos x = 1 − sin 2 x ]
2 sin x
= cot −1
2 cos 2 x /2
1 + cos x
= cot −1
sin x
2 sin x /2 cos x /2
x
x
2 x
and sin x = 2 sin cos
Q1 + cos x = 2 cos
2
2
2
64
www.arihantbooks.com
x x
= = RHS
= cot −1 cot
2 2
x
x
π
π
Note If x ∈ 0, , then 1 − sin x = cos − sin and if x ∈ , π , then
2
2
2
2
x
x
1 − sin x = sin − cos
2
2
1 + x − 1 − x π 1
= − cos −1 x
+
+
−
1
1
x
x
4 2
Question 11. tan −1
To remove the square root sign, firstly substitute x = cosθ then use the
relation 1 + cos θ = 2cos 2( θ/ 2) and 1 − cos θ = 2sin2( θ/ 2).
Solution Let x = cos θ so that cos −1 x = θ
1 + cos θ − 1 − cos θ
1+ x − 1− x
= tan −1
tan −1
1 + cos θ + 1 − cos θ
1+ x + 1− x
θ
θ
2 cos − 2 sin
−1
2
2 Q1 + cos θ = 2 cos 2 θ and 1 − cos θ = 2 sin 2 θ
= tan
θ
2
2
2 cos + 2 sin θ
2
2
θ
θ
θ
cos − sin
1 − tan
−1
−1
2
2
2
= tan
= tan
cos θ + sin θ
1 + tan θ
2
2
2
∴
(inside the bracket divide numerator and denominator by cos θ /2)
tan A − tan B
π θ
= tan −1 tan −
Q tan (A − B) = 1 + tan A tan B
4 2
π θ π 1
−1
Hence proved.
= − = − cos x
4 2 4 2
Question 12.
2 2
9π 9
1 9
− sin −1 = sin −1
3 4
8
4
3
9
1
Firstly, we shift the term sin−1 from LHS to RHS and use the relation
3
4
sin−1 x + sin−1 y = sin−1( x 1 − y 2 + y 1 − x 2 ), to get the required result.
Solution Given,
2 2
9π 9
1 9
− sin −1 = sin −1
3 4
8
4
3
⇒
2 2
9π 9
1 9
= sin −1 + sin −1
3 4
8
4
3
⇒
2 2
9 π 9 −1 1
= sin + sin −1
3
8
4
3
NCERT Class XII Mathematics Solutions
RHS =
=
65
9 −1 1
−1 2 2
sin + sin
4
3
3
2
2
2 2
9 −1 1
2 2
1
1−
1 −
sin
+
3
4
3
3
3
[Qsin −1 x + sin −1 y = sin −1(x 1 − y 2 + y 1 − x 2 )]
=
9 −1 1 1 2 2 2 2
×
sin × +
4
3
3
3 3
9 π 9π
9 −1 1 8 9
= LHS. Hence proved.
sin + = sin −1 (1) = × =
9 9 4
4
4 2
8
Alternative method
9π 9
1 9 π
1 9
1
LHS =
− sin −1 = − sin −1 = cos −1
3 4 2
3 4
3
8
4
=
π
Q sin −1 x + cos −1 x =
2
2
=
9
1
sin −1 1 −
3
4
=
9
2 2
1 9
= RHS.
sin −1 1 − = sin −1
4
3
9 4
[Qcos −1 x = sin −1 1 − x 2 ]
Hence proved.
Direction (Q. Nos. 13 to 17) Solve the following equations for x :
Question 13. 2 tan −1 (cos x) = tan −1 ( 2 cosec x)
Solution Given, 2 tan −1(cos x) = tan −1(2 cosec x)
⇒
⇒
⇒
−1
−1 2 x
Q2 tan x = tan
2
x
1
−
2 cos x
2
2 cos x
−1 2 cos x
−1 2
=
⇒
=2
tan
= tan
⇒
sin 2 x
sin x
sin x
sin 2 x sin x
π
π
cot x = 1 ⇒ cot x = cot
⇒ x=
4
4
2 cos x
tan −1
= tan −1(2 cosec x)
1 − cos 2 x
Question 14. tan −1
1− x 1
= tan −1 x, ( x > 0).
1+ x 2
Multiply both sides by 2 and then on LHS use the relation
2x
and solve it and equate both sides to get the
2 tan−1 x = tan−1
2
1 − x
value of x.
66
www.arihantbooks.com
Solution Given,
1 − x
−1
or 2 tan −1
= tan x
1 + x
1 − x 1
−1
tan −1
= tan x
1 + x 2
⇒
1 − x
2
1 + x
tan −1
= tan −1 x
2
1 − 1 − x
1 + x
−1
−1 2 y
Q2 tan y = tan
2
1 − y
2(1 − x)
(1 + x)
= tan −1 x
2
2
x) − (1 − x)
(1 + x)2
⇒
tan −1
(1 +
⇒
2(1 − x)(1 + x)
= tan −1 x
tan −1
2
2
1
x
1
x
+
−
−
(
)
(
)
⇒
2(1 − x 2)
−1
tan −1 2
= tan x
2
2
2
1
x
2
x
1
x
2
x
+
+
−
−
+
⇒
2(1 − x 2)
−1
tan −1
= tan x
4
x
⇒
1 − x2
=x
2x
(1 − x 2)
⇒ tan −1
= tan −1 x
2x
⇒ 1 − x 2 = 2x 2 ⇒ 1 = 3x 2 ⇒ x 2 =
1
1
⇒x = ±
3
3
[Qx > 0 given, so we do not take x = −
1
3
Question 15. sin (tan −1 x), |x| < 1, is equal to
x
1
1
(a)
(b)
(c)
2
2
1− x
1− x
1 + x2
1
]
3
x=
⇒
Solution (d) sin (tan −1 x) = sin sin −1
=
x
1 + x2
.
(d)
x
1 + x2
x
−1
−1
Q tan x = sin
2
1+ x
1+ x
x
2
Hence, the correct option is (d).
π
2
Question 16. sin −1 (1 − x) − 2 sin −1 x = , then x is equal to
(a) 0,
1
2
(b) 1,
1
2
(c) zero
(d)
1
2
NCERT Class XII Mathematics Solutions
67
(i) Shift the term 2sin−1 x from LHS to RHS and use the identity
π
cos −1 a = − sin−1 a.
2
(ii) Take cosine on both sides and use cos( − x ) = cos x and
cos 2x = 1 − 2sin2 x.
Solution (c) Given, sin −1(1 − x) − 2 sin −1 x =
⇒
⇒
⇒
⇒
⇒
⇒
⇒
π
2
π
− sin −1(1 − x) ⇒ − 2 sin −1 x = cos −1(1 − x)
2
π
Q sin −1(1 − x) + cos −1(1 − x) =
2
−1
[multiplying both sides by cos x]
cos (− 2 sin x) = 1 − x
−2 sin −1 x =
cos (2 sin −1 x) = 1 − x
[1 − 2 sin (sin
2
−1
[Qcos (− x) = + cos x]
x)] = 1 − x
1 − 2 [sin(sin −1 x)]
2
[Qcos 2x = 1 − 2 sin 2 x]
=1− x
[Qsin 2 x = (sin x)2]
1 − 2x = 1 − x ⇒ 2x − x = 0
2
2
x(2x − 1) = 0 ⇒ x = 0 or 2x − 1 = 0 ⇒ x = 0 or
1
2
1
does not satisfy the given equation, so x = 0.
2
Hence, the correct option is (c).
Alternate method
π
Given, sin −1(1 − x) − 2 sin −1 x =
2
Let x = sin θ ⇒ θ = sin −1 x, then
π
π
sin −1(1 − sin θ) − 2 θ =
⇒ sin −1(1 − sin θ ) = + 2 θ
2
2
π
π
1 − sin θ = sin + 2 θ ⇒ 1 − sin θ = cos 2 θ Q sin + θ = cos θ
⇒
2
2
But x =
⇒
⇒
Either
⇒
⇒
1 − sin θ = 1 − 2 sin 2 θ
[Qcos 2 θ = 1 − 2 sin 2 θ]
2 sin 2 θ − sin θ = 0 ⇒ sin θ (2 sin θ − 1) = 0
sin θ = 0 or 2 sin θ − 1 = 0
[Qsin θ = x]
x = 0 or 2x − 1 = 0
1
x = 0 or x =
2
1
does not satisfy the given equation. So, x = 0.
2
To check your answer
Put x = 0 in the given equation,
π
π
π
⇒
sin −1 (1 − 0) − 2 sin −1 0 =
−2 ×0 =
⇒
∴
2
2
2
But x =
π π
=
2 2
68
www.arihantbooks.com
1
in the given equation,
2
1
1 π
∴
sin −1 1 − − 2 sin −1 =
2
2 2
π
π π
1
1 π
⇒
sin −1 − 2 sin −1 =
⇒ −2 × =
6
6 2
2
2 2
1
π − 2π π
−π π
⇒
= ⇒
≠ , so x = is not possible.
2
6
2
6
2
Note While solving the trigonometric equation, sometimes it may have
some extra roots, so please take careful about it.
Put x =
x
x − y
Question 17. tan −1 − tan −1
is equal to
y
x + y
−3 π
4
x
− 1
−1 x
−1 x − y
−1 x
−1 y
Solution (c) tan − tan
= tan − tan
y
x + y
y
x + 1
y
x
x − y
x
= tan −1 − tan −1 − tan −1 1 Q tan −1 x − tan −1 y = tan −1
1 + xy
y
y
π
= tan −1 1 = . Hence, the correct option is (c).
4
(a)
π
2
(b)
π
3
(c)
π
4
(d)
Selected NCERT Exemplar Problems
5π
13 π
−1
.
+ cos cos
6
6
5π
13π
−1
tan −1 tan
+ cos cos
6
6
Question 1. Find the value of tan −1 tan
Solution
π
π π
= tan −1 tan + + cos −1 cos 2π +
2 3
6
π
π
= tan −1 − cot
+ cos −1 cos
3
6
π
[Qtan + θ = − tan θ and cos(2π + θ) = cos θ]
2
π
π π
= tan −1 − tan − + cos −1 cos
2
3
6
π
Q tan 2 − θ = cot θ
NCERT Class XII Mathematics Solutions
69
π
π
π π
+ cos −1 cos = tan −1 tan − +
= tan −1 − tan
6
6 6
6
[Q tan (− θ) = − tan θ]
π π
= − + =0
6 6
− 3 π
+ .
2 6
Question 2. Evaluate cos cos −1
Firstly applying the relation cos −1( − x ) = π − cos −1 x and then simplify it.
− 3
π
3
π
Solution cos cos −1
+ = cos π − cos −1
+
2
6
2 6
(Qcos −1(− x) = π − cos −1 x)
π π
= cos π − +
= cos π = − 1
6 6
Question 3. Find the value of
1
−π
−1 1
−1
tan −1 −
+ cot
+ tan sin
3
3
2
1
−π
−1 1
−1
+ tan sin
+ cot
3
3
2
π
1
−1 1
−1
[Q sin (− θ) = − sin θ]
= tan −1 −
+ cot
+ tan − sin
3
2
3
Solution tan −1 −
π
−π π
+ − tan −1 sin
6
3
2
π
π π
π
= − tan −1(1) = − = −
6
6 4
12
=
[Qtan −1(− x) = − tan −1 x]
Question 4. Find the real solutions of the equation
tan −1 x( x + 1) + sin −1 x2 + x + 1 =
π
.
2
Here, we do not add two different inverse trigonometric function. So, we
use the domains of tan−1 x and sin−1 x and simplify them.
π
2
π
2
x + x +1=
2
Solution. tan −1 x(x + 1) + sin −1 x 2 + x + 1 =
⇒
tan −1 x 2 + x + sin −1
This equation holds, if
x 2 + x ≥ 0 and 0 ≤ x 2 + x + 1 ≤ 1
Now,
x 2 + x ≥ 0 and 0 ≤ x 2 + x + 1 ≤ 1
70
www.arihantbooks.com
⇒
x 2 + x ≥ 0 and x 2 + x + 1 ≤ 1
⇒
x + x ≥ 0 and x + x ≤ 0
2
⇒
[Qx 2 + x + 1 > 0 for all x]
2
x 2 + x = 0 ⇒ x = 0, − 1
Clearly, these two values satisfy the given equation. Hence, x = 0, − 1 are
the solutions of the given equation.
Question 5. Find the value of the expression
Solution
1
sin 2 tan −1 + cos(tan −1 2 2 ).
3
1
Let E = sin 2 tan −1 + cos (tan −1 2 2)
3
Now, 2 tan
and
−1
2× 1
1
3 = tan −1
= tan −1
2
3
1
1 −
3
3
−1 3
−1
4
= tan
= sin
2
4
3
1+
4
3
3
= sin −1 4 = sin −1
5
5
4
tan −1(2 2) = cos −1
2
3
8
9
−1
−1 2 θ
Q2 tan θ = tan
1 − θ2
x
Q tan −1 x = sin −1
2
1 + x
1
= cos −1
3
1 + (2 2)
1
2
Q tan −1 x = cos −1
∴
1
1 + x2
1
E = sin 2 tan −1 + cos (tan −1 2 2)
3
3
1 3 1 9 + 5 14
= sin sin −1 + cos cos −1 = + =
=
5
3 5 3
15
15
3
Question 6. Solve the following equation : cos (tan −1 x) = sin cot −1
4
3
Solution cos (tan −1 x) = sin cot −1
4
= sin tan −1 = sin
3
sin −1
4
3 +4
4
2
2
Q tan −1 x = sin −1
x
1 + x2
NCERT Class XII Mathematics Solutions
4 4
=
5 5
4
x) = cos (− tan −1 x) =
5
71
= sin sin −1
⇒
cos (tan −1
[Q cos (x) = cos (− x)]
4
tan −1 x = − tan −1 x = cos −1
5
⇒
tan −1 x = − tan −1 x = tan −1
⇒
⇒
x=
Question 7.
3
4
Qcos −1 x = tan −1
1 − x2
x
3 −3
,
4 4
1 + x2 + 1 − x2 π 1
= + cos −1 x2 .
Prove that tan −1
1 + x2 − 1 − x2 4 2
Substitute x 2 by cos 2θ to remove the square root sign and then use the
relation 1 + cos 2θ = 2cos 2 θ and 1 − cos 2 θ = 2 sin2 θ.
1 + x2
tan −1
1 + x 2
1 + x2 +
LHS = tan −1
1 + x2 −
Solution Given,
+ 1 − x2 π 1
= + cos −1 x 2
2
− 1 − x 4 2
1 − x 2
1 − x 2
x 2 = cos 2θ
Let
1 + cos 2 θ + 1 − cos 2 θ
2 cos θ + 2 sin θ
= tan −1
∴ LHS = tan −1
2 cos θ − 2 sin θ
1 + cos 2 θ − 1 − cos 2 θ
[Q1 + cos 2θ = 2 cos 2 θ and 1 − cos 2θ = 2 sin 2 θ]
cos θ + sin θ
= tan −1
cos θ − sin θ
[divide inside the bracket by cos θ]
π
tan + tan θ
+
tan
1
θ
−1
4
= tan −1 tan π + θ
= tan −1
= tan
4
π
1 − tan θ
1 − tan (tan θ)
4
π
π 1
+ θ = + cos −1 x 2
4
4 2
∴ LHS = RHS.
=
tan θ + tan φ
Q tan (θ + φ) = 1 − tan θ tan φ
1
2
−1 2
Q x = cos 2 θ = ⇒ θ = cos x
2
Hence proved.
72
www.arihantbooks.com
Question 8. Find the simplified form of cos −1 cos x +
3
5
x∈
4
sin x , where
5
− 3π π
, .
4
4
The angle of cos −1 be converted into a standard formula cos ( a − b) by
3
4
substituting
= cos θ and
= sin θ and then use the identity
5
5
−1
cos [cos ( a − b)] = a − b.
4
3
E = cos −1 cos x + sin x
5
5
3
…(i)
Let
cos θ =
5
4
Then,
…(ii)
sin θ =
5
On dividing Eq. (ii) by Eq. (i), we get
4
4
…(iii)
tan θ =
⇒ θ = tan −1
3
3
4
3
∴
E = cos −1 cos x + sin x = cos −1(cos θ cos x + sin θ sin x)
5
5
[using Eqs. (i) and (ii)]
[Qcos(a − b) = cos a cos b + sin a sin b]
= cos −1 [cos(θ − x)]
4
[from Eq. (iii)]
= θ − x = tan −1 − x
3
Solution Let
Question 9. If a1 , a2 , a3 ,....,an is an arithmetic progression with common
difference d, then evaluate the following expression
d
d
−1
tan tan −1
+ tan
1
a
a
1
a
a
+
+
1 2
2 3
d
d
+ tan −1
+ ...... +
.
1 + a3 a4
1 + an−1 an
(i) Since, a1, a2,......, an is an arithmetic progression with common
difference d.
Then, d = a2 − a1 = a3 − a2 = .......... = an − an −1
x − y
−1
−1
(ii) Use the relation tan−1
= tan x − tan y and then simplify.
1 + xy
Solution Given, a1, a2, a3, a4,..., an is an arithmetic progression, then
d = a2 − a1 = a4 − a3 = ..... = an − an −1
NCERT Class XII Mathematics Solutions
∴
73
d
d
−1
tan tan −1
+ tan
+
1
a
a
1
a2a3
+
1 2
d
d
−1
+ tan −1
+ .... + tan
1 + a3a4
1 + an −1an
a − a1
−1 a − a2
= tan tan −1 2
+ tan 3
1 + a1a2
1 + a2a3
a − a3
−1 a − an −1
+ tan −1 4
+ .... + tan n
1 + a3a4
1 + an −1an
= tan[tan −1 a2 − tan −1 a1 + tan −1 a3 − tan −1 a2 + tan −1 a4
− tan −1 a3 + ..... + tan −1 an − tan −1 an −1]
−1 x − y
−1
−1
Q tan 1 + xy = tan x − tan y
an − a1
−1
−1
−1 an − a1
= tan[tan an − tan a1] = tan tan
=
1 + ana1 1 + a1an
© Copyright 2026 Paperzz