MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Assignment 2 Mathematics 1001 Winter 2016 SOLUTIONS [5] 1. (a) Let u = 1 1 1 so du = − 2 dx and − du = 2 dx. The integral becomes x x x Z 1 Z ex dx = − eu du x2 = −eu + C 1 = −e x + C. [5] (b) Let u = √ √ 2 3 1 3t so du = √ dt and du = √ dt. The integral becomes 3 2 t 3t √ Z Z 6 sec2 3t 2 √ dt = · 6 sec2 (u) du 3 3t = 4 tan(u) + C √ = 4 tan 3t + C. [5] (c) Let u = π − cos(x) so du = sin(x) dx. The integral becomes 7 Z Z π sin(x) sin − cos(x) dx = sin(u) du 7 = − cos(u) + C π − cos(x) + C. = − cos 7 [5] 1 (d) Let u = 3 − x2 so du = −2x dx and − du = x dx. Furthermore, x2 = 3 − u so 2 x4 = (3 − u)2 . The integral becomes Z Z 1 5 2 7 x (3 − x ) dx = − x4 u7 du 2 Z 1 =− (3 − u)2 u7 du 2 Z 1 =− (9u7 − 6u8 + u9 ) du 2 1 9 8 2 9 1 10 =− u − u + u +C 2 8 3 10 1 1 9 = − (3 − x2 )8 + (3 − x2 )9 − (3 − x2 )10 + C. 16 3 20 –2– [5] (e) Observe that we can rewrite the given integral as Z Z Z 1 3x−1 x 3x −1 x 8x tan(8x ) dx. 2 tan(8 ) dx = 2 2 tan(8 ) dx = 2 Now we let u = 8x so du = 8x ln(8) dx and Z 23x−1 tan(8x ) dx = 1 ln(8) du = 8x dx. The integral becomes Z 1 tan(u) du 2 ln(8) 1 [− ln|cos(u)|] + C = 2 ln(8) =− [5] [5] ln|cos(8x )| + C. ln(64) 2. (a) We use u-substitution with u = 5x3 − 6x2 so du = (15x2 − 12x) dx and 4x) dx. Now we can write Z Z 5x2 − 4x 10x2 − 8x dx = 2 dx 5x3 − 6x2 5x3 − 6x2 Z 1 2 du = 3 u 2 = ln|u| + C 3 2 = ln|5x3 − 6x2 | + C. 3 (b) We begin by performing long division: 2x2 − 7x 3x + 1 6x − 19x2 − 7x + 1 6x3 + 2x2 − 21x2 − 7x + 1 − 21x2 − 7x 1 3 Thus we have Z 6x3 − 19x2 − 7x + 1 dx = 3x + 1 Z 2x2 − 7x + 1 3x + 1 dx 2 7 1 = x3 − x2 + ln|3x + 1| + C. 3 2 3 [5] (c) We begin by performing long division: 3x x3 + 2 3x4 − x2 + 6x 3x4 + 6x 2 −x 1 3 du = (5x2 − –3– Thus we can write Z Z Z x2 3x4 − x2 + 6x x2 3 2 dx = 3x − dx = dx. x − x3 + 2 x3 + 2 2 x3 + 2 For the remaining integral, let u = x3 + 2 so du = 3x2 dx and Z 3x4 − x2 + 6x 3 dx = x2 − 3 x +2 2 3 = x2 − 2 3 = x2 − 2 1 3 du = x2 dx. Then Z 1 1 du 3 u 1 ln|u| + C 3 1 ln|x3 + 2| + C. 3
© Copyright 2026 Paperzz