– Homework 5 – tran – (52970) This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page – find all choices before answering. 001 1. y 2. y ′ 3. y ′ 4. y ′ 5. y ′ 6. y ′ 2. f ′ (x) = −12 sin(12x + 5) correct 3. f ′ (x) = 12 sin(12x + 5) 10.0 points Find the derivative of y when √ √ √ y = 8 sin( x) − 6 x cos( x) . ′ 1 √ √ cos( x) = 4 sin( x) − √ x sin(√x) √ √ = 4 sin( x) + 7 x √ √ sin( x) = 4 cos( x) − √ x cos(√x) √ √ = 3 sin( x) − 7 x √ √ cos( x) = 3 sin( x) + √ correct x sin(√x) √ √ = 3 cos( x) + 7 x Explanation: By the Product and Chain Rules, cos(√x) cos(√x) ′ √ √ y =4 −3 x x √x sin(√x) √ +3 . x Consequently, √ √ cos( x) ′ y = 3 sin( x) + √ . x 002 10.0 points Find the derivative of f when f (x) = cos(6x + 8) cos(6x − 3) − sin(6x + 8) sin(6x − 3) . 1. f ′ (x) = cos(6x + 8) sin(6x − 3) 4. f ′ (x) = −6 sin(12x + 5) 5. f ′ (x) = sin(6x + 8) cos(6x − 3) Explanation: Since f (x) = cos(6x + 8) cos(6x − 3) − sin(6x + 8) sin(6x − 3) h i = cos (6x + 8) + (6x − 3) = cos(12x + 5) , we see that f ′ (x) = −12 sin(12x + 5) . 003 10.0 points Find f ′ (x) when f (x) = sec2 x + 3 tan2 x . 1. f ′ (x) = −4 sec2 x tan x 2. f ′ (x) = −4 tan2 sec x 3. f ′ (x) = 8 sec2 x tan x correct 4. f ′ (x) = 8 tan2 sec x 5. f ′ (x) = 4 sec2 x tan x 6. f ′ (x) = 4 tan2 sec x Explanation: Since d sec x = sec x tan x, dx d tan x = sec2 x, dx – Homework 5 – tran – (52970) Thus the Chain Rule ensures that f ′ (x) = 2 sec2 x tan x + 6 tan x sec2 x . Consequently, f ′ (x) = 8 sec2 x tan x . 004 10.0 points 6 3/2 (x − 3) (x + 3)1/2 4. f ′ (x) = 5. f ′ (x) = 6. f ′ (x) = 3 (x 3)3/2 3 (x − 3)1/2 (x + 3)3/2 correct 3 3/2 (x − 3) (x + 3)1/2 6 1/2 (x − 3) (x + 3)3/2 Explanation: To apply the Chain Rule it’s simpler to write r 1/2 x−3 x−3 f (x) = = . x+3 x+3 For then, 1 f (x) = 2 x−3 x+3 1 = 2 x+3 x−3 −1/2 1/2 1/2 · 6 . (x + 3)2 Consequently, 3 (x − 3)1/2 (x + 3)3/2 . 10.0 points f (x) = 5 tan 4x cos3 4x . 1. f ′ (x) = 20 cos 4x (1 + 3 sin2 4x) 2. f ′ (x) = 5 cos 4x(3 sin2 4x − 1) 3. f ′ (x) = 5 cos 4x(1 − 3 cos2 4x) 4. f ′ (x) = 20 cos 4x (1 − 3 cos2 4x) 5. f ′ (x) = 20 cos 4x (1−3 sin2 4x) correct Explanation: Using the fact that d 1 tan x = , dx cos2 x d x−3 dx x + 3 d x−3 . dx x + 3 But by the Quotient Rule, (x + 3) − (x − 3) d x−3 = dx x + 3 (x + 3)2 6 = . (x + 3)2 d cos x = − sin x, dx together with the Chain rule, we obtain f ′ (x) = ′ x+3 x−3 Find the derivative of f when 6 1. f (x) = − 3/2 (x − 3) (x + 3)1/2 − 3)1/2 (x + 005 ′ 3. f ′ (x) = − 1 f (x) = 2 ′ f ′ (x) = Determine f ′ (x) when r x−3 f (x) = . x+3 2. f ′ (x) = 2 20 cos3 4x 2 cos 4x − 60 tan 4x cos2 4x sin 4x. Consequently, f ′ (x) = 20 cos 4x (1 − 3 sin2 4x) . Notice that the problem slightly simpler if we observe that tan 4x = sin 4x , cos 4x – Homework 5 – tran – (52970) 3 Determine f ′ (x) when so that √ f (x) = 5 sin 4x cos2 4x, and then differentiate this function using the known derivatives of sin 4x and cos 4x. 006 10.0 points ′ Find the value of F (2) when F (x) = f (g(x)) f (x) = e g(2) = 3, g (2) = 4 , f ′ (2) = 3, f ′ (3) = 4 . 1. F ′ (2) = 15 . √ 1 e 4x+5 1. f ′ (x) = √ 2 4x + 5 √ e 2. f (x) = 2 √ 4x+5 ′ correct 4x + 5 √ √ 3. f ′ (x) = 2e 4x+5 4x + 5 and ′ 4x+5 √ 4. f ′ (x) = 4e 4x+5 √ 4e 4x+5 5. f ′ (x) = √ 4x + 5 Explanation: By the chain rule ′ 2. F (2) = 14 √ ′ f (x) = e 3. F ′ (2) = 17 4x+5 √ 4. F ′ (2) = 13 e = 2√ d√ 4x + 5 dx 4x+5 4x + 5 . 5. F ′ (2) = 16 correct 008 Explanation: By the Chain Rule, If y is defined implicitly by F ′ (x) = f ′ (g(x))g ′(x) . Thus ′ ′ ′ F (2) = f (g(2))g (2) = f ′ (3)g ′ (2) . Consequently, when g(2) = 3, g ′ (2) = 4 , f ′ (2) = 3, f ′ (3) = 4 , we see that F ′ (2) = 16 . Notice that the value of f ′ (2) was not needed. 007 10.0 points 10.0 points 4y 2 − xy − 15 = 0 , find the value of dy/dx at (17, 5). dy 5 1. = correct dx (17, 5) 23 dy 6 2. = dx (17, 5) 23 dy 6 3. = − dx (17, 5) 23 dy 5 4. = dx (17, 5) 24 5 dy = − 5. dx (17, 5) 23 Explanation: – Homework 5 – tran – (52970) Differentiating implicitly with respect to x we see that 8y dy dy −y−x = 0. dx dx Thus dy y = . dx 8y − x keywords: implicit differentiation, Folium of Descartes, derivative, 010 Find tan(x + y) = 4x + y . dy 5 . = dx (17, 5) 23 Find 2. 3. dy when dx dy 2x2 − 3y = 2 correct dx y + 3x dy 2x2 − 3y = 2 dx y − 3x 2x2 + 3y dy = 2 dx y − 3x dy 3y + 2x2 4. = 2 dx y + 3x 5. 3y − 2x2 dy = 2 dx y − 3x Explanation: We use implicit differentiation. For then 6x2 − 3y 2 1. dy 4 − sec2 (x + y) = correct dx sec2 (x + y) − 1 2. dy 4 + sec2 (x + y) = dx sec2 (x + y) − 1 3. dy 1 − sec2 (x + y) = dx sec2 (x + y) + 4 4. 1 − sec2 (x + y) dy = dx sec2 (x + y) − 4 5. 4 − sec2 (x + y) dy = dx sec2 (x + y) + 1 6. dy 1 + sec2 (x + y) = dx sec2 (x + y) + 4 10.0 points 2x3 − y 3 − 9xy − 1 = 0 . 1. 10.0 points dy when dx At (17, 5), therefore, 009 dy dy − 9y − 9x = 0, dx dx which after solving for dy/dx and taking out the common factor 3 gives dy 3 (2x2 − 3y) − 3 (y 2 + 3x) = 0 . dx Explanation: Differentiating implicitly with respect to x, we see that dy dy 2 = 4+ sec (x + y) 1 + . dx dx After rearranging, this becomes dy 2 sec (x + y) − 1 = 4 − sec2 (x + y) . dx Consequently, dy 4 − sec2 (x + y) = . dx sec2 (x + y) − 1 Consequently, dy 2x2 − 3y = 2 dx y + 3x 4 keywords: . 011 10.0 points – Homework 5 – tran – (52970) After simplification this becomes y = 013 2. f ′ (x) = √ 51 1 . x− 10 10 3. f ′ (x) = √ 10.0 points 4. f ′ (x) = √ Find dy/dx when e2y = 12x2 + 3y 2 . 1. dy 4x = 2 dx 4x + 3y 2 − 3y 2. dy 3x = 2 dx 4x + y 2 + y 3. 3x dy = 2 dx 4x + y 2 − y 4. dy 4x = correct 2 dx 4x + y 2 − y 5. 4x dy = 2 dx 4x + y 2 + y 5. f ′ (x) = √ 6. f ′ (x) = √ 20 1 − x2 20 16 − x2 5 correct 16 − x2 5 1 − x2 4 1 − x2 Explanation: Use of d 1 , arcsin(x) = √ dx 1 − x2 together with the Chain Rule shows that 5 1 ′ f (x) = p . 2 4 1 − (x/4) Consequently, Explanation: Differentiating f ′ (x) = √ e2y = 12x2 + 3y 2 implicitly with respect to x we see that 2y dy dy 2e = 24x + 6y , dx dx 015 Thus 1. f ′ (x) = √ . 1. f ′ (x) = 2 1 + e6x 2. f ′ (x) = 2e3x 1 + e6x 3. f ′ (x) = √ 10.0 points Determine the derivative of x f (x) = 5 arcsin . 4 4 16 − x2 10.0 points f (x) = 2 tan−1 (e3x ) . dy 12x = 2y . dx e − 3y 014 5 . 16 − x2 Find the derivative of so dy 4x = 2 dx 4x + y 2 − y 6 4. f ′ (x) = √ 5. f ′ (x) = 6 1 − e6x 6e3x 1 − e6x 6 1 + e6x 6. f ′ (x) = √ 2e3x 1 − e6x – Homework 5 – tran – (52970) 2 7. f (x) = √ 1 − e6x ′ 6e3x correct 1 + e6x 8. f ′ (x) = Explanation: Since 1 d tan−1 x = , dx 1 + x2 d ax e = aeax , dx the Chain Rule ensures that 6e3x f ′ (x) = . 1 + e6x 016 10.0 points Find the derivative of f when f (θ) = ln (sin 6θ) . 1 cos 6θ 1. f ′ (θ) = 2. f ′ (θ) = 6 cot 6θ correct Find the derivative of f when p f (x) = 3 ln(x + x2 − 7), (x > 3) . 1. f ′ (x) = − √ 2. f ′ (x) = − √ 6 x2 − 7 3 x2 − 7 3 3. f ′ (x) = − √ 2 x2 − 7 4. f ′ (x) = 3 2 x2 − 7 √ 5. f ′ (x) = √ 6. f ′ (x) = √ 3 x2 − 7 x2 − 7 Explanation: By the Chain Rule 3 x √ f (x) = 1+ √ x + x2 − 7 x2 − 7 ′ = √ 018 6 sin 6θ 5. f ′ (θ) = 6. f ′ (θ) = − tan 6θ Explanation: By the Chain Rule, f ′ (θ) = 1 d 6 cos 6θ (sin 6θ) = . sin(6θ) dθ sin 6θ 3 x2 f (θ) = 6 cot 6θ . 017 10.0 points −7 f (x) = ln 1. f ′ (x) = − 2x3 1 − x4 2. f ′ (x) = − 2x 1 − x4 3. f ′ (x) = 1 + x2 . 1 − x2 2x correct 1 − x4 4. f ′ (x) = − 5. f ′ (x) = . 10.0 points Find the derivative of s Consequently, ′ correct 6 3. f ′ (θ) = cot 6θ 4. f ′ (θ) = 6 tan 6θ 7 x3 1 − x2 2x3 1 − x4 – Homework 5 – tran – (52970) x 1 − x2 6. f ′ (x) = 8. y ′ = −y(ln x + 1) Explanation: Properties of logs ensure that s 1 + x2 ln 1 − x2 q q = ln (1 + x2 ) − ln (1 − x2 ) = By the Chain rule, therefore, 2x 1 2x + f ′ (x) = 2 1 + x2 1 − x2 Consequently, (1 − x2 ) + (1 + x2 ) 1 − x2 2x f (x) = 1 − x4 ′ 019 . Determine y when 2 y = x(−x ) . y (ln x − 1) x2 2. y ′ = xy(2 ln x + 1) 3. y ′ = −y(2 ln x − 1) 4. y ′ = − y (ln x − 1) x2 5. y ′ = y(ln x + 1) 6. y ′ = −xy(2 ln x + 1) correct ′ ln y = −x2 ln x . Thus by implicit differentiation, 1 dy = −2x ln x − x . y dx Consequently, y ′ = −xy(2 ln x + 1) . 020 Find 7. y = xy(2 ln x − 1) 10.0 points dy when dx y ln x + y 2 = 4x . . 1. dy 4 + xy = dx x ln x − 2y 2. 4−y dy = dx ln x + 2y 3. 4x − y dy = correct dx x ln x + 2xy 4. dy 4+y = dx ln x + 2y 5. 4x − y dy = dx ln x − 2xy 10.0 points ′ 1. y ′ = Explanation: After taking natural logs we see that 1 ln(1 + x2 ) − ln(1 − x2 ) . 2 = x 8 6. dy 4x + y = dx x ln x − 2xy Explanation: Differentiating implicitly with respect to x we see that 1 dy dy y + (ln x) + 2y = 4, x dx dx which after rearrangement becomes dy y (ln x + 2y) = 4− . dx x Consequently, dy 4x − y = dx x ln x + 2xy .
© Copyright 2026 Paperzz