Differentiation dominoes 3 – chain, product and quotient rules Cut along the dashed lines to create 24 domino cards. Match the dominoes by differentiating the expression on the right hand side with respect to x (a, b, c and d are constants), giving your answer in its simplest form. The dominoes form one continuous loop. 3x 2 6 2x 1 2 x 2 15 2 x 4 36 x 3 (x a)3 4x 1 a(b x)3 10 x 3 5 2 (x 2)2 3x 2 7x x 2 x 20 4 x b 2x 4 3x 2 x 1 3 ax bx 2 20 x 4 2ax 3 0 –1 x b © www.teachitmaths.co.uk 2013 3x 4 5x 3 x2 5 3 x 4 1 6 x a 2 x 5 2 x 3 b 4 x 3 4 3 cx 3 a 4 5 x b 3ab 2 6abx 3ax 2 8ax 2 5 21(2 x 3) 5 x a 2 2x 7 3 2 x 2 9(2 x 1) 20320 c 4 x 3 2 3 x d 4x3 x 2x 1 6 2 x d 0.5( x 3 8) x 2 2x 4 (x 2 1)(x 3) x 1 x 6ax 3a 2 4 x2 (3x 2 2x 1)2 1 3 x3 bx c 3x 36 x 2 7 3 x ax 2 ( x 1)( x 2)( x 3) 4 3 bx 3 2bx a 7 45 6x 5 ax 7.3 a 6 5 x a 8 x 15 3x 2 ab 6 8x 1 a(0.5 2 x)(2 x 0.5) (x 2 6 x 8)(x 5) x 4 (x 2 x 6)(4 x) x 3 (x 2)3 (x 1)3 (2 x)3 (x 5)3 Page 1 of 2 Differentiation dominoes 3 – chain, product and quotient rules These expressions use a mixture of basic differentiation and the chain, product and quotient rules. Some expressions require polynomial division to find the answer in its simplest form. Answers (reading down the page) 3x 2 2 x 20 4 x b x 2 5 x x 7 3 x ax 2 2 5 21(2 x 3) (x 2 x3 6 2x a 2x 4 0.5( x 3 8) x 2 x b x 1 (x a)3 2ax 3 6ax 3a 2 4 3 cx 3 a 4 5 x b 6abx 3ax 2 c 4 x 3 6 5 x a 2 3 x d 2x 7 © www.teachitmaths.co.uk 2013 (x 2 1 2 x 2 1 6 x a 15 2 x 4 5 2 36 x 3 (x 2)3 (x 1)3 36 x 2 6x 5 20320 5 2 x 3 5 x a 2 (x 2)2 (3x 2 2x 1)2 2x 4 6 x 8)(x 5) x 4 3 2 x 2 b 4 x 3 7x x 2 x 5 3 x 4 10 x 3 bx c 3 ax bx 2 3x –1 a(0.5 2 x)(2 x 0.5) 8ax x 6)(4 x) x 3 2bx a a(b x)3 (x 5)3 ax 7.3 4 3 bx 3 4x3 x 2x 1 6 2 x d 4x 1 3ab 2 (2 x)3 (x 2 1)(x 3) x 1 3x 2 3x 2 2 1 3 0 1 3 9(2 x 1) ab 6 8x 1 20 x 4 3x 4 5x 3 x2 4 x2 ( x 1)( x 2)( x 3) Page 2 of 2
© Copyright 2026 Paperzz