0.2 Notes

Chapter 0 Notes - Precalculus
0.2 Operations with Complex Numbers
A. Imaginary and Complex Numbers
Imaginary unit i: π’Š = βˆšβˆ’πŸ and therefore π’ŠπŸ = βˆ’πŸ
π’Š=
π’ŠπŸ“ =
π’ŠπŸ =
π’ŠπŸ” =
π’ŠπŸ‘ =
π’ŠπŸ• =
π’ŠπŸ’ =
π’ŠπŸ– =
Powers of i: to find the value of 𝑖 𝑛 , let R be the remainder when n is divided by 4
n<0
n>0
𝑅 = βˆ’3 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = 𝑖
𝑅 = 1 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = 𝑖
𝑅 = βˆ’2 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = βˆ’1
𝑅 = 2 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = βˆ’1
𝑅 = βˆ’1 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = βˆ’π‘–
𝑅 = 3 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = βˆ’π‘–
𝑅 = 0 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = 1
𝑅 = 0 π‘‘β„Žπ‘’π‘› 𝑖 𝑛 = 1
Practice
Simplify using the i^2 method.
1. 𝑖 16
2. 𝑖 25
3. 𝑖 βˆ’14
5. 𝑖 23
6. 𝑖 βˆ’18
8. 𝑖 31
9. 𝑖 βˆ’22
Simplify using the i^4 method.
4. 𝑖 20
Simplify using the remainder method.
7. 𝑖 24
Complex number: number that has a real and an imaginary part
Standard form: a + bi
Imaginary number: 4 + 2i
Pure imaginary number: 2i
1
Practice. Simplify.
a) (4 βˆ’ 𝑖 ) + (βˆ’3 + 5𝑖)
b) (8 βˆ’ 5𝑖 ) βˆ’ (4 βˆ’ 2𝑖)
c) (6 + 2𝑖 ) βˆ’ (10 βˆ’ 5𝑖)
d) (2 βˆ’ 3𝑖)(6 + 7𝑖)
e) (3 βˆ’ 2𝑖 )2
f) (4 + 𝑖 )(4 βˆ’ 𝑖 )
g) (6 βˆ’ 3𝑖)(8 + 2𝑖)
h) (3 βˆ’ 4𝑖)(3 + 4𝑖)
B. Use Complex Conjugates
Complex conjugates: two complex numbers of the form a + bi and a – bi
Are used to rationalize complex numbers (we aren’t allowed to leave these in the denominator of a
fraction)
Practice. Simplify.
1.
12+3𝑖
2.
1+2𝑖
2
6βˆ’2𝑖
4+𝑖
3. (8 βˆ’ 3𝑖) ÷ (4 + 3𝑖)
4. (1 + 𝑖) ÷ (2 βˆ’ 6𝑖)
0.3 Quadratic Functions and Equations
Standard Form of a Quadratic Equation: 𝑦 = π‘Žπ‘₯ 2 + 𝑏π‘₯ + 𝑐
A. Graph Quadratic Functions
Parabola
Practice: Graph each by making a table.
a) 𝑓 (π‘₯) = 2π‘₯ 2 βˆ’ 8π‘₯ + 4
b) 𝑔(π‘₯) = π‘₯ 2 + 3π‘₯ βˆ’ 10
3