物理化學 (II) 化三 第二次小考 g = 9.806 m/ s2 R = 8.3145 J/K-mol (一) 1. 2. 3. 4. 5. 6. 7. 8. 配合題: 12 % T β CV ln f V f V f Ti κ T C P ln f Vβ Pf Pf Ti T f C p dT Pf Ti T Pi V β dP Tf Ti Δ G Tf Δ H d r d r T Ti T qcold Tcold w Thot Tcold qhot Thot w Thot Tcold P S mo P R ln o P wcycle Thot Tcold qhot Thot Δ G T P (100 %) 12/16/2009 姓名:KEY nR xi lnxi 1 atm = 101.325 kPa a) Entropy for a change from (Pi,Ti → Pf,Tf) at constant V, ∆S b) Entropy of gas, ∆S for a change from (Vi,Ti → Vf,Tf)at constant P c) Entropy of solid, ∆S for a change from (Pi,Ti → Pf,Tf) at constant V d) The coefficient of performance of Carnot refrigerator, ηr e) The efficiency of reversible heat engine, ε f) The maximum coefficient of performance of heat pump, ηHP g) The equilibrium constant of reaction in terms of molarity, KC h) The variation of initial slope of compression factor with P at constant T i) Molar entropy of ideal gas as function of P , Sm(P) 9. 10 . μ APure T, P R T lnx A j) Gibbs-Helmholtz equation under constant P 11 . lim k) chemical potential of species A in gas mixture, μ A 12 . c oRT K P o P l) entropy of mixing for the gases, ∆Smixing m) None of above i z p0 P T Ans: b c a j d mixture fielk hg __________________________________________________________________ (二) 1. 推導題 24% A T U . Write an expression that 1 T V would allow you to relate A at two temperatures. [6.16] From dA = − S dT – p dV, show that 1 A A S A A TS U A T Ans: 2 2 2 2 T T T T T V T T V T A T A T T 1T V T V 1T At constant V, A T T 2 U V T V T, P 2 1 1 A T A T A U d T T T T 2 dT and T 2 2 T1 1 U T 2 T1 1 1 T2 T __________________________________________________________________ RT a , find an expression for the b P RT 2 Boyle temperature in terms of a, b, and R. [7.17] 2. For the Bertholet equation, Vm Ans: z pVm z pb pa b a 1 2 3 and 2 3 RT RT R T p T RT R T z b a a At T = TB, 2 3 0 and TB 0 . Therefore RTB R TB Rb p T __________________________________________________________________ z 1 a The slope of the z versus pressure curve b as p → 0 p T,P0 RT RT for a van der Waals gas. At what temperature does the slope of the curve have its maximum value for a van der Waals gas? Show that the value of the b2 . [P7.20] maximum slope is 4a 3. z 1 Ans: p T,P0 RT a for a van der Waals gas b RT z a 1 a 1 1 2a b b 2 2 2 p RT RT RT RT RT RT T, P 0 2a 2a 0 or Tmax= Setting this derivative equal to zero gives b Rb RTmax T z 1 p Tmax ,P0 RTmax The maximum slope is (三)、計算題 64% 1. Ans: 2 a b b b b b a 2 a 4 a RTmax 2 a CP ,m Hg, l T 30.093 4.944 103 . 1 1 J K mol K Between 0ºC and 100ºC. Calculate H and S if 1 mol of Hg(l) is raised in temperature from 0º to 100ºC at constant P. [P5.13] The heat capacity of Hg(l) is given by Tf H m CP ,m d T / K Ti 30.093 T f Ti 2.472 103 T f2 Ti 2 J mol1 2.84 103 J mol1 Tf S m Tf CP ,m T / K d T / K 30.093ln T i Ti 4.944 10 3 T f Ti 8.90 J K 1 mol1 __________________________________________________________________ 2. The heat capacity of -quartz is given by CP ,m -quartz, s J K 1 mol1 46.94 34.31 103 T T2 11.30 105 2 . The coefficient of K K thermal expansion is given by = 0.3530×10–4 K–1 and Vm = 22.6 cm3 mol–1. Calculate Sm for the transformation -quartz (25ºC, 1 atm) → -quartz (225ºC, 1000 atm). [P5.15] Tf Ans: Δ S C P Ti dT Vβ Pf Pi T 498K 46.94 ln 34.31 10 3 498 298 5.65 10 5 4982 2982 J K 1mol 1 298K 3 1 6 3 1 4 1 22.6 cm mol 10 m cm 0.3530 10 K 999 atm 1.01325 105 Pa atm 1 = 21.97 K-1 mol–1 −0.0808 J K-1 mol–1 = 21.89 J K-1 mol–1 __________________________________________________________________ Calculate S, Stotal, and Ssurroundings when the volume of 85.0 g of CO initially at 298 K and 1.00 bar increases by a factor of three in (a) an adiabatic reversible expansion, (b) an expansion against Pexternal = 0, and (c) an isothermal reversible expansion. Take CP,m to be constant at the value 29.14 J mol–1 K–1 and assume ideal gas behavior. [P5.17] Ans: a) An adiabatic reversible expansion Ssurroundings = 0 because q = 0;andS = 0 because the process is reversible. Stotal = S + Ssurroundings = 0. The process is not spontaneous. 3. b) An expansion against Pexternal = 0 T and w = 0. Therefore U = q = 0. Vf 85.0 g S nR ln 8.314 J mol1K 1 ln 3 Vi 28.01 g mol1 3.03 mol 9.13 J mol1K 1 = 27.7 J K 1 Stotal = S + Ssurroundings = 27.7 J K–1 + 0 = 27.7 J K–1. The process is spontaneous. c) An isothermal reversible expansion T = 0. Therefore U = 0. Vf 3.03 mol 8.314 J mol1K 1 298 K ln 3 8.25 103 J w q nRT ln Vi qreversible 8.25 103 J S = 27.7 J K 1 298 K T q 8.25 103 J S surroundings 27.7 J K 1 T 298 K Stotal = S + Ssurroundings = 27.7 J K–1 – 27.7 J K–1 = 0. The system and surroundings are at equilibrium. __________________________________________________________________ 4. Consider the reaction FeO(s) + CO(g) ⇄ Fe(s) + CO2(g) for which KP is found to have the following values: T 600ºC 1000ºC KP 0.900 0.396 a) Calculate Greaction , Sreaction and H reaction for this reaction at 600ºC. Assume is independent of temperature. that H reaction b) Calculate the mole fraction of CO2(g) present in the gas phase at 600ºC. [P6.12] PCO2 P Ans: a) FeO(s) + CO(g) ⇄ Fe(s) + CO2(g) K P PCO P ln O Δ H reaction K P 1000 C K P 600 C R Assume that H reaction 1 1 1273.15 K 873.15 K is independent of temperature K P 1000 C 1 1 K P 600 C 1273.15 K 873.15 K 0.396 8.3145x ln 0.900 19.0 kJ mol 1 1 1 1273.15 873.15 b) because KP = PCO2/PCO = 0.900 KP = Kx because = 0 xCO2 0.900 and xCO2 xCO 1 xCO O Δ H reaction R ln xCO2 0.47 xCO 0.53 __________________________________________________________________ 5. A sample containing 2.25 mol of He (1 bar, 298 K) is mixed with 3.00 mol of Ne (1 bar, 298 K) and 1.75 mol of Ar (1 bar, 298 K). Calculate Gmixing and Smixing . [P6.18] Ans: Gmixing nRT xi ln xi i 2.25 2.25 3.00 3.00 1.75 1.75 7.00 mol 8.314 J mol1K 1 298.15 K ln ln ln 7.00 7.00 7.00 7.00 7.00 7.00 18.6 103J Smixing nR xi ln xi i 2.25 2.25 3.00 3.00 1.75 1.75 ln ln 7.00 mol 8.314 J mol1K 1 ln 7.00 7.00 7.00 7.00 7.00 7.00 62.5 J K 1 __________________________________________________________________ 6. Calculate KP at 475 K for the reaction NO(g) + 1/2 O2(g) → NO2(g) assuming that H reaction is constant over the interval 298–600 K. Do you expect KP to increase or decrease as the temperature is increased to 550 K? Given that ∆Gfº(kJ/mol) ∆Hfº (kJ/mol) 33.2 25.65 NO2(g) NO(g) 91.3 87.6 [P6.23] Ans: ∆Hreactionº = ∆Hfº(NO2, g) – ∆Hfº(NO, g) = (33.2 – 91.3)x103 J/mol = –58.1 x103 J/mol ∆Greactionº = ∆Gfº(NO2, g) – ∆Gfº(NO, g) = (25.65 – 87.6)x103 J/mol = –61.95 x103 J/mol ∆Greactionº (Tf) / Tf = ∆Greactionº (Ti) / Ti – ∆Hreactionº x [(1/ Tf) – (1/ Ti)] = –34.24 x103 J/mol Kp(Tf) = Kp(475 K) = exp[–∆Greactionº (Tf)/RTf] = 1.16 x107 Because H reaction < 0, KP decreases as T increases. __________________________________________________________________ 7. For a gas at a given temperature, the compressibility is described by the 2 P P 4.00 105 , where Pº = 1 P P bar. Calculate the activity coefficient for P = 100, 300 and 600 bar. For which of these values is the activity coefficient greater than one? [P7.23] Ans: ln (f /p) = empirical equation z 1 9.00 103 3 5 P 1 9.00 10 P 4.00 10 P 1 z 1 ln dP dP P P 0 0 P 2 ln 9.00 103 P 2.00 105 P 2 0.497, 0.368, 0.406, 0.670, and 1.65 at 100, 200, 300, 400, and 500 bar, respectively. At 1 bar, ln γ = −0.7 and γ = 0.497. At 300 bar, ln γ = −0.9 and γ = 0.409. At 600 bar, ln γ = 1.8 and γ = 6.05. Only at 600 bar, γ > 1. __________________________________________________________________ 8. For values of z near one, it is a good approximation to write z z P 1 P. P T If z =1.00054 at 0ºC and 1 bar, and the Boyle temperature of the gas is 220 K, estimate the values of Vm, a and b for the van der Waals gas.[P7.24] Ans: From Example Problem 7.2, a 1 z b P RT RT T We can write three equations in three unknowns: a P z 1 b RT RT a 1 bar 5.4 104 b 2 1 1 2 8.314 10 L bar mol K 273.15 K 8.314 10 L bar mol1 K 1 273.15 K a a TB 220 K 2 Rb 8.314 10 L bar mol1 K 1 b RT a 8.314 102 L bar mol1 K 1 273.15 K a P 1 bar Vm b Vm 2 Vm b Vm 2 Vm Using an equation solver, the results are a 1.15 L2 bar mol2 , b 0.0630 L mol1 , Vm 22.72 L. Vm
© Copyright 2026 Paperzz