TAFI Tasmanian Aquaculture and Fisheries Institute New and emerging temperate marine fin-fish species for farming in Australia: challenges in larval rearing Stephen Battaglene Sagiv Kolkovski Current status Australia 3rd largest fishing zone 267 000 t of seafood Aquaculture (4% p.a. growth) 1984 Barramundi (1,500 t) 1987 Atlantic salmon culture (15,000 t) 1989 Southern blue fin tuna (9,000 t) Brief history marine fish culture 1800’s, 1958 - 20 years old 30 species, 3 emerging species Main influences Live feeds techniques from Belgium and Japan Pond culture from USA Larval rearing protocols and system technology from France, Greece and Israel Larval diets from Europe and Japan Challenges New species v exotic species Reliable hatchery production Tyranny of distance and economies of scale Marine fish hatchery research Darwin AC QDPI JCU 10 Scientists QDPI WA Fisheries SARDI NSW Fisheries TAFI New temperate species SCIENTIFIC NAME Argyrosomus japonicus* Seriola lalandi* Pagrus auratus auratus* Macquaria novemaculeata** Acanthopagrus butcheri** Hippocampus abdominalis* Latris lineata Rhombosolea tapirina* Sillaginodes punctata Glaucosoma hebraicum CLIMATE STATE Temperate NSW & SA Temperate SA & NSW Temperate NSW,SA,WA Temperate NSW& Qld Temp/Cold TAS & WA Coldwater TAS Coldwater TAS Coldwater TAS Temperate SA & WA Temperate WA *Commercially cultured **for stock enhancement Australian bass Dhufish Mulloway Sea horse Yellowtail kingfish Seahorse Striped trumpeter King George whiting Black bream Pink snapper Reproduction Early hormonal induction Quality holding facilities Captive broodstock photothermal control F1 + generations Broodstock diets System developments Replicated larval rearing Live feed enrichment Automatic larval feeders Commercial production of Artemia (cysts, biomass) Development of new Artemia products Ozone hatchery What is it used for? 1. Improving sea water quality in live feeds 2. Disinfection of eggs 3. Larval rearing What are the issues? 1. Poorly understood (saltwater) 2. Toxic by-products 3. Difficult to measure 4. OH&S requirements Larval Development Swim bladder inflation Eye/lens diameter (mm) Sensory development 0.7 Eye Lens 0.6 Y = 0.182 + 0.016*(X) 2 R = 0.889 0.5 0.4 0.3 Y = 0.067 + 0.005*(X) R 2 = 0.934 0.2 0.1 0.0 Skeletal structure 0 Digestive system 10 15 20 25 30 Cobcroft, PhD thesis 2002 High DHA Low DHA Trotter, PhD thesis 2003 Bransden et al, Aquaculture 2005 5 Larval age (days post-hatching) Optimising abiotic rearing parameters hatchery 50 y = 0.0005x 3.3206 R 2 = 0.9975 Mean wet weight (mg) 45 40 21oC, 35‰, 14:10 L:D 35 24oC, 20-35‰, 12:12 and 18:6 L:D b Improved regime b 30 25 20 b 15 a a 2.6834 y = 0.0014x 2 R = 0.9984 Previous best practice 10 b 5 a b a a 0 4 8 12 16 20 24 28 Time (days after hatch) 32 Fielder et al., in press JWAS Larval nutrition 3000 hatchery Commercial diet evaluation Feed intake 2500 35 (no. larvae) FattySurvival acid (mg/g DM) Dose response designs Lipid content Rotifer density of Artemia NO OTC 30 ARA OTC EPA 2000 DHA 25 1500 20 15 1000 10 500 5 00 0% NR 1 19% NR 38% NR 557% NR 77% NR 10 Rotifer density (rotifers ml-1) Microbial control Growth of 36 day old larvae Larval survival Diet 1 Diet 2 Survival (numbers) Larval length (mm) 12 2000 1600 11 1200 10 800 400 9 0 0 7 14 21 Antibiotic No Antibiotic Artemia DHA (mg/g DM) Battaglene et al, Aquaculture 2005 Bransden et al, Aquaculture 2005 Intensive v extensive Health 1.00E+09 log CFU/ml 1.00E+08 CFU's per ml A1 DHA Selco Reducing bacteria in Artemia by rinsing 1.00E+07 Bacteria 1.00E+06 1.00E+05 Viruses 1.00E+04 Parasites 8 7 6 5 4 3 2 1 0 Algamac Non glycerol DC Selco DHA Selco Microbial control Experimental Improve larval8 resistance15 4 0 1.00E+03 Super HUFA Super Selco 24 hours after incubation of cysts Immunostimulants Malformations 0 min 1.00E+02 5 min 10 min Time Flushing 20 min Disinfection of eggs Better filtration 30 min Kolkovski, Kolkovski unpublished et al., unpublished Bioremediation Biocontrol UV and ozone Non-selective reduction in bacteria S elective enhancement of bacteria Vadstein et al 1993 Betanodavirus The more you look…… • Barramundi • Australian bass • Striped trumpeter Widespread in Australia Common antibody positive wild stock Ozone disinfection of eggs Increasing array of diagnostic tools (IHCT, IFAT, Elisa, nRT-PCR) Moody et al, FRDC 2004 Myxozoan (Kudoa neurophila) Clinical signs wasting, whirling and scoliosis Diagnostic mature plasmodia in CNS PCR assay available Control using ozone disinfection 400X 100 µm 0.1 spore sensitivity Grossel, PhD thesis 2005 Malformations hatchery Areas of investigation Nutrition (feed intake) Vitamins E and C Temperature Larval dry weight (mg) Kolkovski et al., unpublished 2.4 2.35 2.3 Yellow tail Kingfish 2.25 2.2 2.15 2.1 2.05 2 1.95 1.9 Base rotifers/Base Artemia Base rotifers/'mega' C/E Artemia mega' C/E rotifers/Base Artemia mega' C/E rotifers/'mega' C/E Artemia Tank design Number of rotifers consumed -1 1.5 h-1) Mean(larvae walling score Shaw et al., unpublished 84 Striped trumpeter d a 7 63 cd bcd 5 4 2 3 ab 2 abc abcb b abc 1 1 a 0 0 0 5 c 10 15 g Turbidity (NTU) 20 ap Jaw malformations Striped trumpeter larvae (TAFI) Yellowtail kingfish larvae (NIWA) normal malformed Day 30 (11 mm SL) Day 16 (10 mm SL) Cobcroft et al., NZJMFWR 2004 Micro diet development and assessment a First principle approach 100 a,b Survival (%) 95 Assessment of commercial diets 90 b,c c,d 85 c,d 80 d 75 70 65 60 Cuttlefish Early weaning Prawn Snapper Squid Treatment Post Wean 0.06 120 0.05 100 rotifers 0.04 0.03 Nippai Gemma Proton 0.02 Wet Weight Larval wet weight (g) Krill 80 60 40 0.01 20 0 0 23 26 29 32 35 38 41 44 Days after hatching Fielder et al., unpublished 35 40 Days post hatch Kolkovski et al., unpublished PROTON Interested in finding out more?
© Copyright 2026 Paperzz