New and emerging temperate marine fin

TAFI
Tasmanian
Aquaculture
and Fisheries
Institute
New and emerging
temperate marine fin-fish
species for farming in
Australia: challenges in larval
rearing
Stephen Battaglene
Sagiv Kolkovski
Current status
Australia 3rd largest fishing zone
267 000 t of seafood
Aquaculture (4% p.a. growth)
1984
Barramundi (1,500 t)
1987
Atlantic salmon culture (15,000 t)
1989
Southern blue fin tuna (9,000 t)
Brief history marine fish culture
1800’s, 1958 - 20 years old
30 species, 3 emerging species
Main influences
Live feeds techniques from Belgium and Japan
Pond culture from USA
Larval rearing protocols and system technology from France,
Greece and Israel
Larval diets from Europe and Japan
Challenges
New species v exotic species
Reliable hatchery production
Tyranny of distance and economies of scale
Marine fish hatchery research
Darwin AC QDPI
JCU
10
Scientists
QDPI
WA Fisheries
SARDI
NSW
Fisheries
TAFI
New temperate species
SCIENTIFIC NAME
Argyrosomus japonicus*
Seriola lalandi*
Pagrus auratus auratus*
Macquaria novemaculeata**
Acanthopagrus butcheri**
Hippocampus abdominalis*
Latris lineata
Rhombosolea tapirina*
Sillaginodes punctata
Glaucosoma hebraicum
CLIMATE
STATE
Temperate NSW & SA
Temperate SA & NSW
Temperate NSW,SA,WA
Temperate NSW& Qld
Temp/Cold TAS & WA
Coldwater TAS
Coldwater TAS
Coldwater TAS
Temperate SA & WA
Temperate WA
*Commercially cultured **for stock enhancement
Australian bass
Dhufish
Mulloway
Sea horse
Yellowtail kingfish
Seahorse
Striped trumpeter
King George whiting
Black bream
Pink snapper
Reproduction
Early hormonal induction
Quality holding facilities
Captive broodstock
photothermal control
F1 + generations
Broodstock diets
System developments
Replicated larval rearing
Live feed enrichment
Automatic larval feeders
Commercial production of Artemia (cysts, biomass)
Development of new Artemia products
Ozone
hatchery
What is it used for?
1. Improving sea water quality in live feeds
2. Disinfection of eggs
3. Larval rearing
What are the issues?
1. Poorly understood (saltwater)
2. Toxic by-products
3. Difficult to measure
4. OH&S requirements
Larval Development
Swim bladder inflation
Eye/lens diameter (mm)
Sensory development
0.7
Eye
Lens
0.6
Y = 0.182 + 0.016*(X)
2
R = 0.889
0.5
0.4
0.3
Y = 0.067 + 0.005*(X)
R 2 = 0.934
0.2
0.1
0.0
Skeletal structure
0
Digestive system
10
15
20
25
30
Cobcroft, PhD thesis 2002
High DHA
Low DHA
Trotter, PhD thesis 2003
Bransden et al, Aquaculture 2005
5
Larval age (days post-hatching)
Optimising abiotic rearing parameters
hatchery
50
y = 0.0005x 3.3206
R 2 = 0.9975
Mean wet weight (mg)
45
40
21oC, 35‰, 14:10
L:D
35
24oC, 20-35‰,
12:12 and 18:6 L:D
b
Improved regime
b
30
25
20
b
15
a
a
2.6834
y = 0.0014x
2
R = 0.9984
Previous best practice
10
b
5
a
b
a
a
0
4
8
12
16
20
24
28
Time (days after hatch)
32
Fielder et al., in press JWAS
Larval nutrition
3000
hatchery
Commercial diet evaluation
Feed intake
2500
35
(no. larvae)
FattySurvival
acid (mg/g
DM)
Dose response designs
Lipid content
Rotifer density
of Artemia
NO OTC
30
ARA OTC
EPA
2000
DHA
25
1500
20
15
1000
10
500
5
00
0% NR 1 19% NR 38% NR 557% NR 77% NR 10
Rotifer density (rotifers ml-1)
Microbial control
Growth of 36 day old larvae
Larval survival
Diet 1
Diet 2
Survival (numbers)
Larval length (mm)
12
2000
1600
11
1200
10
800
400
9
0
0
7
14
21
Antibiotic
No Antibiotic
Artemia
DHA (mg/g DM)
Battaglene et al, Aquaculture 2005
Bransden et al, Aquaculture 2005
Intensive
v
extensive
Health
1.00E+09
log CFU/ml
1.00E+08
CFU's per ml
A1 DHA Selco
Reducing bacteria in Artemia by rinsing
1.00E+07
Bacteria
1.00E+06
1.00E+05
Viruses
1.00E+04
Parasites
8
7
6
5
4
3
2
1
0
Algamac
Non
glycerol
DC Selco
DHA Selco
Microbial control
Experimental
Improve
larval8 resistance15
4
0
1.00E+03
Super HUFA
Super Selco
24
hours
after incubation of cysts
Immunostimulants
Malformations
0 min
1.00E+02
5 min
10 min
Time Flushing
20 min
Disinfection of
eggs
Better filtration
30 min
Kolkovski,
Kolkovski
unpublished
et al., unpublished
Bioremediation
Biocontrol
UV and ozone
Non-selective
reduction in bacteria
S elective enhancement
of bacteria
Vadstein et al 1993
Betanodavirus
The more you look……
• Barramundi
• Australian bass
• Striped trumpeter
Widespread in Australia
Common antibody positive wild stock
Ozone disinfection of eggs
Increasing array of diagnostic tools
(IHCT, IFAT, Elisa, nRT-PCR)
Moody et al, FRDC 2004
Myxozoan (Kudoa neurophila)
Clinical signs wasting, whirling and
scoliosis
Diagnostic mature plasmodia in
CNS
PCR assay available
Control using ozone disinfection
400X
100 µm
0.1 spore sensitivity
Grossel, PhD thesis 2005
Malformations
hatchery
Areas of investigation
Nutrition (feed intake)
Vitamins E and C
Temperature
Larval dry weight (mg)
Kolkovski et al., unpublished
2.4
2.35
2.3
Yellow tail
Kingfish
2.25
2.2
2.15
2.1
2.05
2
1.95
1.9
Base
rotifers/Base
Artemia
Base
rotifers/'mega'
C/E Artemia
mega' C/E
rotifers/Base
Artemia
mega' C/E
rotifers/'mega'
C/E Artemia
Tank design
Number of rotifers consumed
-1 1.5 h-1)
Mean(larvae
walling
score
Shaw et al., unpublished
84
Striped
trumpeter
d
a
7
63
cd
bcd
5
4
2
3
ab
2
abc
abcb
b
abc
1
1
a
0
0
0
5
c
10
15
g
Turbidity (NTU)
20
ap
Jaw malformations
Striped trumpeter larvae (TAFI)
Yellowtail kingfish larvae (NIWA)
normal
malformed
Day 30
(11 mm SL)
Day 16
(10 mm SL)
Cobcroft et al., NZJMFWR 2004
Micro diet development and assessment
a
First principle
approach
100
a,b
Survival (%)
95
Assessment of
commercial diets
90
b,c
c,d
85
c,d
80
d
75
70
65
60
Cuttlefish
Early weaning
Prawn
Snapper
Squid
Treatment
Post Wean
0.06
120
0.05
100
rotifers
0.04
0.03
Nippai
Gemma
Proton
0.02
Wet Weight
Larval wet weight (g)
Krill
80
60
40
0.01
20
0
0
23
26
29
32
35
38
41
44
Days after hatching
Fielder et al., unpublished
35
40
Days post hatch
Kolkovski et al., unpublished
PROTON
Interested in finding out more?